Changes

Line 1,059: Line 1,059:  
Next we define the ''extended alphabet'' or ''bundled alphabet'' <math>\operatorname{E}\mathcal{A}</math> as follows:
 
Next we define the ''extended alphabet'' or ''bundled alphabet'' <math>\operatorname{E}\mathcal{A}</math> as follows:
   −
: <math>\operatorname{E}\mathcal{A} = \mathcal{A} \cup \operatorname{d}\mathcal{A} = \{a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n\}</math>
+
: <p><math>\begin{array}{lclcl}
 +
\operatorname{E}\mathcal{A}
 +
& = & \mathcal{A} \cup \operatorname{d}\mathcal{A}
 +
& = & \{a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n\}. \\
 +
\end{array}</math></p>
    
This supplies enough material to construct the ''differential extension'' <math>\operatorname{E}A,</math> or the ''tangent bundle'' over the initial space <math>A,\!</math> in the following fashion:
 
This supplies enough material to construct the ''differential extension'' <math>\operatorname{E}A,</math> or the ''tangent bundle'' over the initial space <math>A,\!</math> in the following fashion:
   −
:{| cellpadding=2
+
: <p><math>\begin{array}{lcl}
| E''A''
+
\operatorname{E}A
| =
+
& = & \langle \operatorname{E}\mathcal{A} \rangle \\
| ''A'' &times; d''A''
+
& = & \langle \mathcal{A} \cup \operatorname{d}\mathcal{A} \rangle  \\
|-
+
& = & \langle a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle, \\
| &nbsp;
+
\end{array}</math></p>
| =
  −
| 〈E<font face="lucida calligraphy">A</font>〉
  −
|-
  −
| &nbsp;
  −
| =
  −
| 〈<font face="lucida calligraphy">A</font> &cup; d<font face="lucida calligraphy">A</font>〉
  −
|-
  −
| &nbsp;
  −
| =
  −
| 〈''a''<sub>1</sub>,&nbsp;&hellip;,&nbsp;''a''<sub>''n''</sub>,&nbsp;d''a''<sub>1</sub>,&nbsp;&hellip;,&nbsp;d''a''<sub>''n''</sub>〉,
  −
|}
     −
thus giving E''A'' the type '''B'''<sup>''n''</sup> &times; '''D'''<sup>''n''</sup>.
+
and also:
 +
 
 +
: <p><math>\begin{array}{lcl}
 +
\operatorname{E}A
 +
& = & A \times \operatorname{d}A \\
 +
& = & A_1 \times \ldots \times A_n \times \operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n. \\
 +
\end{array}</math></p>
 +
 
 +
This gives <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math>
    
Finally, the tangent universe E''A''<sup>&nbsp;&bull;</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>:
 
Finally, the tangent universe E''A''<sup>&nbsp;&bull;</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>:
12,080

edits