Line 7,671: |
Line 7,671: |
| But that's it, and no further. Neglect of these distinctions in range and target universes of higher dimensions is bound to cause a hopeless confusion. To guard against these adverse prospects, Tables 58 and 59 lay the groundwork for discussing a typical map ''F'' : ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup>], and begin to pave the way, to some extent, for discussing any transformation of the form ''F'' : ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]. | | But that's it, and no further. Neglect of these distinctions in range and target universes of higher dimensions is bound to cause a hopeless confusion. To guard against these adverse prospects, Tables 58 and 59 lay the groundwork for discussing a typical map ''F'' : ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup>], and begin to pave the way, to some extent, for discussing any transformation of the form ''F'' : ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]. |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
| + | <pre> |
− | |+ '''Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators'''
| + | Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators |
− | |- style="background:paleturquoise"
| + | o------o-------------------------o------------------o----------------------------o |
− | ! Item
| + | | Item | Notation | Description | Type | |
− | ! Notation
| + | o------o-------------------------o------------------o----------------------------o |
− | ! Description
| + | | | | | | |
− | ! Type
| + | | U% | = [u, v] | Source Universe | [B^n] | |
− | |-
| + | | | | | | |
− | | valign="top" | ''U''<sup> •</sup>
| + | o------o-------------------------o------------------o----------------------------o |
− | | valign="top" | <font face="courier new">= </font>[''u'', ''v'']
| + | | | | | | |
− | | valign="top" | Source Universe
| + | | X% | = [x, y] | Target Universe | [B^k] | |
− | | valign="top" | ['''B'''<sup>''n''</sup>]
| + | | | = [f, g] | | | |
− | |-
| + | | | | | | |
− | | valign="top" | ''X''<sup> •</sup>
| + | o------o-------------------------o------------------o----------------------------o |
− | | valign="top" |
| + | | | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | EU% | = [u, v, du, dv] | Extended | [B^n x D^n] | |
− | | <font face="courier new">= </font>[''x'', ''y'']
| + | | | | Source Universe | | |
− | |-
| + | | | | | | |
− | | <font face="courier new">= </font>[''f'', ''g''] | + | o------o-------------------------o------------------o----------------------------o |
− | |}
| + | | | | | | |
− | | valign="top" | Target Universe | + | | EX% | = [x, y, dx, dy] | Extended | [B^k x D^k] | |
− | | valign="top" | ['''B'''<sup>''k''</sup>] | + | | | = [f, g, df, dg] | Target Universe | | |
− | |-
| + | | | | | | |
− | | valign="top" | E''U''<sup> •</sup>
| + | o------o-------------------------o------------------o----------------------------o |
− | | valign="top" | <font face="courier new">= </font>[''u'', ''v'', d''u'', d''v'']
| + | | | | | | |
− | | valign="top" | Extended Source Universe
| + | | F | F = <f, g> : U% -> X% | Transformation, | [B^n] -> [B^k] | |
− | | valign="top" | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
| + | | | | or Mapping | | |
− | |-
| + | | | | | | |
− | | valign="top" | E''X''<sup> •</sup>
| + | o------o-------------------------o------------------o----------------------------o |
− | | valign="top" |
| + | | | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | f, g : U -> B | Proposition, | B^n -> B | |
− | | <font face="courier new">= </font>[''x'', ''y'', d''x'', d''y'']
| + | | | | special case | | |
− | |-
| + | | f | f : U -> [x] c X% | of a mapping, | c (B^n, B^n -> B) | |
− | | <font face="courier new">= </font>[''f'', ''g'', d''f'', d''g''] | + | | | | or component | | |
− | |}
| + | | g | g : U -> [y] c X% | of a mapping. | = (B^n +-> B) = [B^n] | |
− | | valign="top" | Extended Target Universe | + | | | | | | |
− | | valign="top" | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] | + | o------o-------------------------o------------------o----------------------------o |
− | |-
| + | | | | | | |
− | | ''F''
| + | | W | W : | Operator | | |
− | | ''F'' = ‹''f'', ''g''› : ''U''<sup> •</sup> → ''X''<sup> •</sup>
| + | | | U% -> EU%, | | [B^n] -> [B^n x D^n], | |
− | | Transformation, or Mapping
| + | | | X% -> EX%, | | [B^k] -> [B^k x D^k], | |
− | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]
| + | | | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) | |
− | |-
| + | | | for each W among: | | -> | |
− | | valign="top" |
| + | | | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | | | | |
− | |
| + | o------o-------------------------o------------------o----------------------------o |
− | |-
| + | | | | | |
− | | ''f''
| + | | !e! | | Tacit Extension Operator !e! | |
− | |-
| + | | !h! | | Trope Extension Operator !h! | |
− | | ''g''
| + | | E | | Enlargement Operator E | |
− | |}
| + | | D | | Difference Operator D | |
− | | valign="top" |
| + | | d | | Differential Operator d | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | | | |
− | | ''f'', ''g'' : ''U'' → '''B'''
| + | o------o-------------------------o------------------o----------------------------o |
− | |-
| + | | | | | | |
− | | ''f'' : ''U'' → [''x''] ⊆ ''X''<sup> •</sup>
| + | | $W$ | $W$ : | Operator | | |
− | |-
| + | | | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], | |
− | | ''g'' : ''U'' → [''y''] ⊆ ''X''<sup> •</sup>
| + | | | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], | |
− | |}
| + | | | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) | |
− | | valign="top" |
| + | | | for each $W$ among: | | -> | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) | |
− | | Proposition
| + | | | | | | |
− | |}
| + | o------o-------------------------o------------------o----------------------------o |
− | | valign="top" |
| + | | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
| + | | $e$ | | Radius Operator $e$ = <!e!, !h!> | |
− | | '''B'''<sup>''n''</sup> → '''B'''
| + | | $E$ | | Secant Operator $E$ = <!e!, E > | |
− | |-
| + | | $D$ | | Chord Operator $D$ = <!e!, D > | |
− | | ∈ ('''B'''<sup>''n''</sup>, '''B'''<sup>''n''</sup> → '''B''')
| + | | $T$ | | Tangent Functor $T$ = <!e!, d > | |
− | |-
| + | | | | | |
− | | = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>]
| + | o------o-------------------------o-----------------------------------------------o |
− | |}
| + | </pre> |
− | |-
| + | |
− | | valign="top" |
| + | <pre> |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes |
− | | W
| + | o--------------o----------------------o--------------------o----------------------o |
− | |}
| + | | | Operator | Proposition | Transformation | |
− | | valign="top" |
| + | | | or | or | or | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | Operand | Component | Mapping | |
− | | W :
| + | o--------------o----------------------o--------------------o----------------------o |
− | |-
| + | | | | | | |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> ,
| + | | Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] | |
− | |-
| + | | | | | | |
− | | ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | | | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k | |
− | |-
| + | | | | | | |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>)
| + | o--------------o----------------------o--------------------o----------------------o |
− | |-
| + | | | | | | |
− | | →
| + | | Tacit | !e! : | !e!F_i : | !e!F : | |
− | |-
| + | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] | |
− | | (E''U''<sup> •</sup> → E''X''<sup> •</sup>) ,
| + | | | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] | |
− | |-
| + | | | | | | |
− | | for each W in the set:
| + | o--------------o----------------------o--------------------o----------------------o |
− | |-
| + | | | | | | |
− | | {<math>\epsilon</math>, <math>\eta</math>, E, D, d}
| + | | Trope | !h! : | !h!F_i : | !h!F : | |
− | |}
| + | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | | valign="top" |
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | | | | |
− | | Operator
| + | o--------------o----------------------o--------------------o----------------------o |
− | |}
| + | | | | | | |
− | | valign="top" |
| + | | Enlargement | E : | EF_i : | EF : | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | |
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | |-
| + | | | | | | |
− | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] ,
| + | o--------------o----------------------o--------------------o----------------------o |
− | |-
| + | | | | | | |
− | | ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] ,
| + | | Difference | D : | DF_i : | DF : | |
− | |-
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | | (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>])
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | |-
| + | | | | | | |
− | | →
| + | o--------------o----------------------o--------------------o----------------------o |
− | |-
| + | | | | | | |
− | | (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>])
| + | | Differential | d : | dF_i : | dF : | |
− | |-
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | |
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | |-
| + | | | | | | |
− | |
| + | o--------------o----------------------o--------------------o----------------------o |
− | |}
| + | | | | | | |
− | |-
| + | | Remainder | r : | rF_i : | rF : | |
− | |
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | <math>\epsilon</math>
| + | | | | | | |
− | |-
| + | o--------------o----------------------o--------------------o----------------------o |
− | | <math>\eta</math>
| + | | | | | | |
− | |-
| + | | Radius | $e$ = <!e!, !h!> : | | $e$F : | |
− | | E
| + | | Operator | | | | |
− | |-
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | | D
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | |-
| + | | | | | | |
− | | d
| + | | | | | [B^n x D^n] -> | |
− | |}
| + | | | | | [B^k x D^k] | |
− | | valign="top" |
| + | | | | | | |
− | | colspan="2" |
| + | o--------------o----------------------o--------------------o----------------------o |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
| + | | | | | | |
− | | Tacit Extension Operator || <math>\epsilon</math>
| + | | Secant | $E$ = <!e!, E> : | | $E$F : | |
− | |-
| + | | Operator | | | | |
− | | Trope Extension Operator || <math>\eta</math>
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | |-
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | | Enlargement Operator || E
| + | | | | | | |
− | |-
| + | | | | | [B^n x D^n] -> | |
− | | Difference Operator || D
| + | | | | | [B^k x D^k] | |
− | |-
| + | | | | | | |
− | | Differential Operator || d
| + | o--------------o----------------------o--------------------o----------------------o |
− | |}
| + | | | | | | |
− | |-
| + | | Chord | $D$ = <!e!, D> : | | $D$F : | |
− | | valign="top" |
| + | | Operator | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | | <font face=georgia>'''W'''</font>
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | |}
| + | | | | | | |
− | | valign="top" |
| + | | | | | [B^n x D^n] -> | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| + | | | | | [B^k x D^k] | |
− | | <font face=georgia>'''W'''</font> :
| + | | | | | | |
− | |-
| + | o--------------o----------------------o--------------------o----------------------o |
− | | ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> ,
| + | | | | | | |
− | |-
| + | | Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : | |
− | | ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> ,
| + | | Functor | | | | |
− | |-
| + | | | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> | |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>)
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | |-
| + | | | | | | |
− | | →
| + | | | | B^n x D^n -> D | [B^n x D^n] -> | |
− | |-
| + | | | | | [B^k x D^k] | |
− | | (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) ,
| + | | | | | | |
− | |-
| + | o--------------o----------------------o--------------------o----------------------o |
− | | for each <font face=georgia>'''W'''</font> in the set:
| + | </pre> |
− | |-
| |
− | | {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>}
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| |
− | | Operator
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
| |
− | |
| |
− | |-
| |
− | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] ,
| |
− | |-
| |
− | | ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] ,
| |
− | |-
| |
− | | (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>])
| |
− | |-
| |
− | | →
| |
− | |-
| |
− | | (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>])
| |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
| |
− | | <font face=georgia>'''e'''</font>
| |
− | |-
| |
− | | <font face=georgia>'''E'''</font>
| |
− | |-
| |
− | | <font face=georgia>'''D'''</font>
| |
− | |-
| |
− | | <font face=georgia>'''T'''</font>
| |
− | |}
| |
− | | valign="top" |
| |
− | | colspan="2" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
| |
− | | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>›
| |
− | |-
| |
− | | Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E›
| |
− | |-
| |
− | | Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D›
| |
− | |-
| |
− | | Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d›
| |
− | |}
| |
− | |}<br>
| |
| | | |
| ===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>=== | | ===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>=== |