Changes

Line 7,256: Line 7,256:  
The component notation ''F''&nbsp;=&nbsp;‹''F''<sub>1</sub>,&nbsp;''F''<sub>2</sub>›&nbsp;=&nbsp;‹''f'',&nbsp;''g''›&nbsp;:&nbsp;''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;''X''<sup>&nbsp;&bull;</sup> allows us to give a name and a type to this transformation, and permits us to define it by means of the compact description that follows:
 
The component notation ''F''&nbsp;=&nbsp;‹''F''<sub>1</sub>,&nbsp;''F''<sub>2</sub>›&nbsp;=&nbsp;‹''f'',&nbsp;''g''›&nbsp;:&nbsp;''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;''X''<sup>&nbsp;&bull;</sup> allows us to give a name and a type to this transformation, and permits us to define it by means of the compact description that follows:
   −
<pre>
+
<br><font face="courier new">
o-----------------------------------------------------------o
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
|                                                           |
+
|
|   <x, y=   F<u, v=   <((u)(v)), ((u, v))>        |
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
|                                                           |
+
| ‹''x'', ''y''›
o-----------------------------------------------------------o
+
| =
</pre>
+
| ''F''‹''u'', ''v''›
 +
| =
 +
| ‹((''u'')(''v'')), ((''u'', ''v''))
 +
|}
 +
|}
 +
</font><br>
    
The information that defines the logical transformation ''F'' can be represented in the form of a truth table, as in Table&nbsp;60.  To cut down on subscripts in this example I continue to use plain letter equivalents for all components of spaces and maps.
 
The information that defines the logical transformation ''F'' can be represented in the form of a truth table, as in Table&nbsp;60.  To cut down on subscripts in this example I continue to use plain letter equivalents for all components of spaces and maps.
12,080

edits