Line 9,275: |
Line 9,275: |
| | style="border-right:none" | <math>\texttt{((~))}\!</math> | | | style="border-right:none" | <math>\texttt{((~))}\!</math> |
| | style="border-left:4px double black" | <math>0\!</math> | | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A9. Differential = Pointwise Linear Approximation to the Difference==== |
| + | |
| + | ====Table A10. Taylor Series Expansion==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | |
| + | <math>\text{Table A10.} ~~ \text{Taylor Series Expansion}~ {\mathrm{D}f = \mathrm{d}f + \mathrm{d}^2\!f}\!</math> |
| + | |- style="background:ghostwhite; height:40px" |
| + | | style="border-right:none" | <math>f\!</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \mathrm{D}f |
| + | \\ |
| + | = & \mathrm{d}f & + & \mathrm{d}^2\!f |
| + | \\ |
| + | = & \partial_x f \cdot \mathrm{d}x ~+~ \partial_y f \cdot \mathrm{d}y & + & \partial_{xy} f \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | <math>\mathrm{d}f|_{x \, y}</math> |
| + | | <math>\mathrm{d}f|_{x \, \texttt{(} y \texttt{)}}</math> |
| + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)} \, y}</math> |
| + | | <math>\mathrm{d}f|_{\texttt{(} x \texttt{)(} y \texttt{)}}</math> |
| + | |- |
| + | | style="border-right:none" | <math>f_0\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{1}\\f_{2}\\f_{4}\\f_{8}\end{matrix}\!</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{3}\\f_{12}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{6}\\f_{9}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{5}\\f_{10}\end{matrix}\!</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 0 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | style="border-right:none" | <math>\begin{matrix}f_{7}\\f_{11}\\f_{13}\\f_{14}\end{matrix}</math> |
| + | | style="border-left:4px double black" | |
| + | <math>\begin{matrix} |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{~} x \texttt{~} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{~} y \texttt{~} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \\ |
| + | \texttt{(} y \texttt{)} \cdot \mathrm{d}x & + & |
| + | \texttt{(} x \texttt{)} \cdot \mathrm{d}y & + & |
| + | \texttt{~} 1 \texttt{~} \cdot \mathrm{d}x\;\mathrm{d}y |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x + \mathrm{d}y\\\mathrm{d}y\\\mathrm{d}x\\0 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}y\\\mathrm{d}x + \mathrm{d}y\\0\\\mathrm{d}x |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}x\\0\\\mathrm{d}x + \mathrm{d}y\\\mathrm{d}y |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0\\\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}x + \mathrm{d}y |
| + | \end{matrix}</math> |
| + | |- |
| + | | style="border-right:none" | <math>f_{15}\!</math> |
| + | | style="border-left:4px double black" | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A11. Partial Differentials and Relative Differentials==== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table A11.} ~~ \text{Partial Differentials and Relative Differentials}\!</math> |
| + | |- style="background:ghostwhite; height:50px" |
| + | | |
| + | | <math>f\!</math> |
| + | | <math>\frac{\partial f}{\partial x}</math> |
| + | | <math>\frac{\partial f}{\partial y}</math> |
| + | | |
| + | <p><math>\operatorname{d}f =</math></p> |
| + | <p><math>\partial_x f \cdot \operatorname{d}x\ +\ \partial_y f \cdot \operatorname{d}y</math></p> |
| + | | <math>\left. \frac{\partial x}{\partial y} \right| f</math> |
| + | | <math>\left. \frac{\partial y}{\partial x} \right| f</math> |
| + | |- style="height:36px" |
| + | | <math>f_0\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | f_{1} \\ |
| + | f_{2} \\ |
| + | f_{4} \\ |
| + | f_{8} \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | (x) & (y) \\ |
| + | (x) & y \\ |
| + | x & (y) \\ |
| + | x & y \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | (y) \\ |
| + | y \\ |
| + | (y) \\ |
| + | y \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | (x) \\ |
| + | (x) \\ |
| + | x \\ |
| + | x \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | (y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| + | y & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| + | y & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | f_{3} \\ |
| + | f_{12} \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | (x) \\ |
| + | x \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | 1 \\ |
| + | 1 \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | 0 \\ |
| + | 0 \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | \operatorname{d}x \\ |
| + | \operatorname{d}x \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | f_{6} \\ |
| + | f_{9} \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | (x, & y) \\ |
| + | ((x, & y)) \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | 1 \\ |
| + | 1 \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | 1 \\ |
| + | 1 \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | \operatorname{d}x & + & \operatorname{d}y \\ |
| + | \operatorname{d}x & + & \operatorname{d}y \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | f_{5} \\ |
| + | f_{10} \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | (y) \\ |
| + | y \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | 0 \\ |
| + | 0 \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | 1 \\ |
| + | 1 \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | f_{7} \\ |
| + | f_{11} \\ |
| + | f_{13} \\ |
| + | f_{14} \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | (x & y) \\ |
| + | (x & (y)) \\ |
| + | ((x) & y) \\ |
| + | ((x) & (y)) \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | y \\ |
| + | (y) \\ |
| + | y \\ |
| + | (y) \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | x \\ |
| + | x \\ |
| + | (x) \\ |
| + | (x) \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | y & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| + | y & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | | |
| + | <math>\begin{smallmatrix} |
| + | ~ \\ |
| + | ~ \\ |
| + | ~ \\ |
| + | ~ \\ |
| + | \end{smallmatrix}</math> |
| + | |} |
| + | |- style="height:36px" |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| + | | <math>0\!</math> |
| | <math>0\!</math> | | | <math>0\!</math> |
| |} | | |} |