User:Jon Awbrey/SEQUENCES
A061396
Plain Wiki Table
Large Scale
Small Scale
Nested Wiki Table
Large Scale
Small Scale
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
|
Old ASCII Version
Illustration of initial terms of A061396 Jon Awbrey (jawbrey(AT)oakland.edu) o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_(p_p) @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p_(p^p) @ o @ ((((())))()) | ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = / \ | | p_1^p_(p_1) p^p_p @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = / | | p_(p_1)^(p_1) p_p^p @ @ ((())((()))) | ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = ^ o---o | p_1^(p_1^2) = / | | p_1^(p_1^p_1) p^(p^p) @ @ (((((()))))) | o-------------------------------------------------------------------------------- Further Comments: Here are a couple more pages from my notes, where it looks like I first arrived at the generating function, and also carried out some brute force enumerations of riffs. I am going to experiment with a different way of transcribing indices and powers into a plaintext. | jj | p< | j / ji | p< p< etc. | i \ ij | p< | ii ------------------------------------------------------- 1978-11-06 Generating Function | R(x) = 1 + x + 2x^2 + ... | | = 1 + x.x^0 (1 + x + 2x^2 + ...) | . 1 + x.x^1 (1 + x + 2x^2 + ...) | . 1 + x.x^2 (1 + x + 2x^2 + ...) | . 1 + x.x^2 (1 + x + 2x^2 + ...) | . ... | | = 1 + x + 2x^2 + ... | | Product over (i = 0 to infinity) of (1 + x.x^i.R(x))^R_i = R(x) ------------------------------------------------------- 1978-11-10 Brute force enumeration of R_n | 4 p's | | p | p< p_p p p | p< p< p p_p p<_p p_p_p p_p< | p< p< p< p< p< p< | | | p | p< p_p p p | p_p< p_p< p< p_p<_p p_p_p_p p_p_p< | p p_p | | | p | p< p_p p p p p | p< p< p< p< p< p< p p< | p p p_p p^p p p | | | p p_p_p p p< | p^p | Altogether, 20 riffs of weight 4. | o---------------------o---------------------o---------------------o | | 3 | 4 | 5 | | o---------------------o---------------------o---------------------| | | // // 2 | 10, 3, 1, 6 | 36, 10, 2, 3, 2, 20 | | o---------------------o---------------------o---------------------| | | | 0^1 4^1, | | | | | 1^1 3^1, | | | | | 2^2, | | | | | 4^1 0^1 | | | o---------------------o---------------------o---------------------o | | 6 | 20 | 73 | | o---------------------o---------------------o---------------------o | ------------------------------------------------------- Here are the number values of the riffs on 4 nodes: o---------------------------------------------------------------------- | | p | p< p_p p p | p< p< p p_p p<_p p_p_p p_p< | p< p< p< p< p< p< | | 2^16 2^8 2^6 2^9 2^5 2^7 | 65536 256 64 512 32 128 o---------------------------------------------------------------------- | | p | p< p_p p p | p_p< p_p< p< p_p<_p p_p_p_p p_p_p< | p p_p | | p_16 p_8 p_6 p_9 p_5 p_7 | 53 19 13 23 11 17 o---------------------------------------------------------------------- | | p | p< p_p p p p | p< p< p< p< p^p p_p p p< | p p p_p p^p p | | 3^4 3^3 5^2 7^2 | 81 27 25 49 12 18 o---------------------------------------------------------------------- | | p p_p_p p p< | p^p | | 10 14 o---------------------------------------------------------------------- For ease of reference, I include the previous table of smaller riffs and rotes, redone in the new style. o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_p_p @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p< @ o @ ((((())))()) | p^p ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = p_p / \ | | p_1^p_(p_1) p< @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = p / | | p_(p_1)^(p_1) p< @ @ ((())((()))) | p ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = p ^ o---o | p_1^(p_1^2) = p< / | | p_1^(p_1^p_1) p< @ @ (((((()))))) | o-------------------------------------------------------------------------------- (later) Expanded version of first table: o-------------------------------------------------------------------------------- | integer factorization riff r.i.f.f. rote --> in parentheses | k p's k nodes 2k+1 nodes o-------------------------------------------------------------------------------- | | 1 1 blank blank @ blank | o-------------------------------------------------------------------------------- | | o---o | | | 2 p_1^1 p @ @ (()) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | 3 p_2^1 = | | p_(p_1)^1 p_p @ @ ((())()) | ^ | \ | o | | o---o | o | | ^ o---o | 4 p_1^2 = / | | p_1^p_1 p^p @ @ (((()))) | o-------------------------------------------------------------------------------- | | o---o | | | o---o | | | 5 p_3 = o---o | p_(p_2) = | | p_(p_(p_1)) p_p_p @ @ (((())())()) | ^ | \ | o | ^ | \ | o | | o-o | / | o-o o-o | 6 p_1 p_2 = \ / | p_1 p_(p_1) p p_p @ @ @ (())((())()) | ^ | \ | o | | o---o | | | o---o | | | 7 p_4 = o---o | p_(p_1^2) = | | p_(p_1^p_1) p< @ o @ ((((())))()) | p^p ^ ^ | \ / | o | | o---o | | | o---o | o | | 8 p_1^3 = ^ ^ o---o | p_1^p_2 = p_p / \ | | p_1^p_(p_1) p< @ o @ ((((())()))) | | o-o o-o | o | | | 9 p_2^2 = ^ o---o | p_(p_1)^2 = p / | | p_(p_1)^(p_1) p< @ @ ((())((()))) | p ^ | \ | o | | o o---o | ^ | | / o---o | o | | 16 p_1^4 = p ^ o---o | p_1^(p_1^2) = p< / | | p_1^(p_1^p_1) p< @ @ (((((()))))) | o-------------------------------------------------------------------------------- o================================================================================ | | p | p< p p_p p | p< p<_p p< p_p< p p_p p_p_p | p< p< p< p< p< p< | | 2^16 2^9 2^8 2^7 2^6 2^5 | 65536 512 256 128 64 32 | o-------------------------------------------------------------------------------- | | p | p< p p_p p | p_p< p_p<_p p_p< p_p_p< p< p_p_p_p | p p_p | | p_16 p_9 p_8 p_7 p_6 p_5 | 53 23 19 17 13 11 | o-------------------------------------------------------------------------------- | | p^p p_p p p | p< p< p< p< | p p p^p p_p | | 3^4 3^3 7^2 5^2 | 81 27 49 25 | o-------------------------------------------------------------------------------- | | p | p p< p p< p^p p_p p p_p_p | p p^p | | 18 14 12 10 | o================================================================================ Triangle in which k-th row lists natural number values for the collection of riffs with k nodes. k | natural numbers n such that |riff(n)| = k --o------------------------------------------------ 0 | 1; 1 | 2; 2 | 3, 4; 3 | 5, 6, 7, 8, 9, 16; 4 | 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, | 32, 49, 53, 64, 81, 128, 256, 512, 65536; The natural number values for the riffs with at most 3 pts are as follows (@'s are roots): | o o o o | | ^ | ^ | v | v | | o o o o o o o o o | | ^ | | | ^ | ^ ^ | v | v v v | v/ | | Riff: @; @, @; @, @ @, @, @, @, @; | | Value: 2; 3, 4; 5, 6 , 7, 8, 9, 16; --------------------------------------------------- 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536, --------------------------------------------------- 1; 2; 3, 4; 5, 6, 7, 8, 9, 16; 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536; ---------------------------------------------------
A062504
TeX Array
\(\begin{array}{l|l|r} k & P_k = \{ n : \operatorname{riff}(n) ~\text{has}~ k ~\text{nodes} \} = \{ n : \operatorname{rote}(n) ~\text{has}~ 2k + 1 ~\text{nodes} \} & |P_k| \\[10pt] 0 & \{ 1 \} & 1 \\ 1 & \{ 2 \} & 1 \\ 2 & \{ 3, 4 \} & 2 \\ 3 & \{ 5, 6, 7, 8, 9, 16 \} & 6 \\ 4 & \{ 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536 \} & 20 \end{array}\) |
JPEG
| |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
|
ASCII
Example * k | natural numbers n such that |riff(n)| = k * 0 | 1; * 1 | 2; * 2 | 3, 4; * 3 | 5, 6, 7, 8, 9, 16; * 4 | 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536; * The natural number values for the riffs with at most 3 pts are as follows (x = root): * .................o.......o..o.......o * .................|.......^..|.......^ * .................v.......|..v.......| * ...........o..o..o....o..o..o..o.o..o * ...........|..^..|....|..|..^..|.^..^ * ...........v..|..v....v..v..|..v/...| * Riff:...x;.x,.x;.x,.x.x,.x,.x,.x,...x; * Value:..2;.3,.4;.5,..6.,.7,.8,.9,..16;
A062537
Wiki + TeX + JPEG
\(a(1) ~=~ 0\) |
\(\text{p}\!\) \(a(2) ~=~ 1\) |
\(\text{p}_\text{p}\!\) \(a(3) ~=~ 2\) |
\(\text{p}^\text{p}\!\) \(a(4) ~=~ 2\) |
\(\text{p}_{\text{p}_{\text{p}}}\!\) \(a(5) ~=~ 3\) |
\(\text{p} \text{p}_{\text{p}}\!\) \(a(6) ~=~ 3\) |
\(\text{p}_{\text{p}^{\text{p}}}\!\) \(a(7) ~=~ 3\) |
\(\text{p}^{\text{p}_{\text{p}}}\!\) \(a(8) ~=~ 3\) |
\(\text{p}_\text{p}^\text{p}\!\) \(a(9) ~=~ 3\) |
\(\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(10) ~=~ 4\) |
\(\text{p}_{\text{p}_{\text{p}_{\text{p}}}}\!\) \(a(11) ~=~ 4\) |
\(\text{p}^\text{p} \text{p}_\text{p}\!\) \(a(12) ~=~ 4\) |
\(\text{p}_{\text{p} \text{p}_{\text{p}}}\!\) \(a(13) ~=~ 4\) |
\(\text{p} \text{p}_{\text{p}^{\text{p}}}\!\) \(a(14) ~=~ 4\) |
\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(15) ~=~ 5\) |
\(\text{p}^{\text{p}^{\text{p}}}\!\) \(a(16) ~=~ 3\) |
\(\text{p}_{\text{p}_{\text{p}^{\text{p}}}}\!\) \(a(17) ~=~ 4\) |
\(\text{p} \text{p}_\text{p}^\text{p}\!\) \(a(18) ~=~ 4\) |
\(\text{p}_{\text{p}^{\text{p}_{\text{p}}}}\!\) \(a(19) ~=~ 4\) |
\(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(20) ~=~ 5\) |
\(\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(21) ~=~ 5\) |
\(\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(22) ~=~ 5\) |
\(\text{p}_{\text{p}_\text{p}^\text{p}}\!\) \(a(23) ~=~ 4\) |
\(\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!\) \(a(24) ~=~ 5\) |
\(\text{p}_{\text{p}_\text{p}}^\text{p}\!\) \(a(25) ~=~ 4\) |
\(\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\) \(a(26) ~=~ 5\) |
\(\text{p}_\text{p}^{\text{p}_\text{p}}\!\) \(a(27) ~=~ 4\) |
\(\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(28) ~=~ 5\) |
\(\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\) \(a(29) ~=~ 5\) |
\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(30) ~=~ 6\) |
\(\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!\) \(a(31) ~=~ 5\) |
\(\text{p}^{\text{p}_{\text{p}_\text{p}}}\!\) \(a(32) ~=~ 4\) |
\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(33) ~=~ 6\) |
\(\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\) \(a(34) ~=~ 5\) |
\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\) \(a(35) ~=~ 6\) |
\(\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!\) \(a(36) ~=~ 5\) |
\(\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!\) \(a(37) ~=~ 5\) |
\(\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\) \(a(38) ~=~ 5\) |
\(\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\) \(a(39) ~=~ 6\) |
\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!\) \(a(40) ~=~ 6\) |
\(\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!\) \(a(41) ~=~ 5\) |
\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(42) ~=~ 6\) |
\(\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!\) \(a(43) ~=~ 5\) |
\(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(44) ~=~ 6\) |
\(\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(45) ~=~ 6\) |
\(\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!\) \(a(46) ~=~ 5\) |
\(\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!\) \(a(47) ~=~ 6\) |
\(\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!\) \(a(48) ~=~ 5\) |
\(\text{p}_{\text{p}^\text{p}}^\text{p}\!\) \(a(49) ~=~ 4\) |
\(\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!\) \(a(50) ~=~ 5\) |
\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\) \(a(51) ~=~ 6\) |
\(\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\) \(a(52) ~=~ 6\) |
\(\text{p}_{\text{p}^{\text{p}^\text{p}}}\!\) \(a(53) ~=~ 4\) |
\(\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!\) \(a(54) ~=~ 5\) |
\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(55) ~=~ 7\) |
\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\) \(a(56) ~=~ 6\) |
\(\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\) \(a(57) ~=~ 6\) |
\(\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\) \(a(58) ~=~ 6\) |
\(\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!\) \(a(59) ~=~ 5\) |
\(\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(60) ~=~ 7\) |
A062860
Wiki + TeX + JPEG
\(1\!\) \(a(0) ~=~ 1\) |
\(\text{p}\!\) \(a(1) ~=~ 2\) |
\(\text{p}_\text{p}\!\) \(a(2) ~=~ 3\) |
\(\text{p}_{\text{p}_{\text{p}}}\!\) \(a(3) ~=~ 5\) |
\(\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(4) ~=~ 10\) |
\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}}}\!\) \(a(5) ~=~ 15\) |
\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(6) ~=~ 30\) |
A106177
Primal Codes of Finite Partial Functions on Positive Integers
\(\begin{array}{rcl} 1 & = & \varnothing \\ 2 & = & 1\!:\!1 \\ 3 & = & 2\!:\!1 \\ 4 & = & 1\!:\!2 \\ 5 & = & 3\!:\!1 \\ 6 & = & 1\!:\!1 ~~ 2\!:\!1 \\ 7 & = & 4\!:\!1 \\ 8 & = & 1\!:\!3 \\ 9 & = & 2\!:\!2 \\ 10 & = & 1\!:\!1 ~~ 3\!:\!1 \\ 11 & = & 5\!:\!1 \\ 12 & = & 1\!:\!2 ~~ 2\!:\!1 \\ 13 & = & 6\!:\!1 \\ 14 & = & 1\!:\!1 ~~ 4\!:\!1 \\ 15 & = & 2\!:\!1 ~~ 3\!:\!1 \\ 16 & = & 1\!:\!4 \\ 17 & = & 7\!:\!1 \\ 18 & = & 1\!:\!1 ~~ 2\!:\!2 \\ 19 & = & 8\!:\!1 \\ 20 & = & 1\!:\!2 ~~ 3\!:\!1 \end{array}\) |
Wiki Table
1 | 1 | |||||||||||||||||||
2 | 1 | 2 | ||||||||||||||||||
3 | 1 | 1 | 3 | |||||||||||||||||
4 | 1 | 2 | 1 | 4 | ||||||||||||||||
5 | 1 | 3 | 1 | 1 | 5 | |||||||||||||||
6 | 1 | 1 | 1 | 4 | 1 | 6 | ||||||||||||||
7 | 1 | 5 | 2 | 9 | 1 | 1 | 7 | |||||||||||||
8 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 8 | ||||||||||||
9 | 1 | 7 | 1 | 25 | 1 | 3 | 1 | 1 | 9 | |||||||||||
10 | 1 | 1 | 1 | 36 | 1 | 2 | 1 | 8 | 1 | 10 |
Wiki + TeX
Smallmatrix
\(\begin{smallmatrix} & & & & & & & & & {\color{red}1} & & {\color{red}1} \\ & & & & & & & & {\color{red}2} & & 1 & & {\color{red}2} \\ & & & & & & & {\color{red}3} & & 1 & & 1 & & {\color{red}3} \\ & & & & & & {\color{red}4} & & 1 & & 2 & & 1 & & {\color{red}4} \\ & & & & & {\color{red}5} & & 1 & & 3 & & 1 & & 1 & & {\color{red}5} \\ & & & & {\color{red}6} & & 1 & & 1 & & 1 & & 4 & & 1 & & {\color{red}6} \\ & & & {\color{red}7} & & 1 & & 5 & & 2 & & 9 & & 1 & & 1 & & {\color{red}7} \\ & & {\color{red}8} & & 1 & & 6 & & 1 & & 1 & & 1 & & 2 & & 1 & & {\color{red}8} \\ & {\color{red}9} & & 1 & & 7 & & 1 & & 25 & & 1 & & 3 & & 1 & & 1 & & {\color{red}9} \\ {\color{red}10} & & 1 & & 1 & & 1 & & 36 & & 1 & & 2 & & 1 & & 8 & & 1 & & {\color{red}10} \end{smallmatrix}\) |
Array
\(\begin{array}{*{21}{c}} & & & & & & & & & {\color{red}1} & & {\color{red}1} \\ & & & & & & & & {\color{red}2} & & 1 & & {\color{red}2} \\ & & & & & & & {\color{red}3} & & 1 & & 1 & & {\color{red}3} \\ & & & & & & {\color{red}4} & & 1 & & 2 & & 1 & & {\color{red}4} \\ & & & & & {\color{red}5} & & 1 & & 3 & & 1 & & 1 & & {\color{red}5} \\ & & & & {\color{red}6} & & 1 & & 1 & & 1 & & 4 & & 1 & & {\color{red}6} \\ & & & {\color{red}7} & & 1 & & 5 & & 2 & & 9 & & 1 & & 1 & & {\color{red}7} \\ & & {\color{red}8} & & 1 & & 6 & & 1 & & 1 & & 1 & & 2 & & 1 & & {\color{red}8} \\ & {\color{red}9} & & 1 & & 7 & & 1 & & 25 & & 1 & & 3 & & 1 & & 1 & & {\color{red}9} \\ {\color{red}10} & & 1 & & 1 & & 1 & & 36 & & 1 & & 2 & & 1 & & 8 & & 1 & & {\color{red}10} \end{array}\) |
Matrix
\(\begin{matrix} n \circ m \\ 1 ~/~\backslash~ 1 \\ 2 ~/~ 1 ~\backslash~ 2 \\ 3 ~/~ 1 \cdot 1 ~\backslash~ 3 \\ 4 ~/~ 1 \cdot 2 \cdot 1 ~\backslash~ 4 \\ 5 ~/~ 1 \cdot 3 \cdot 1 \cdot 1 ~\backslash~ 5 \\ 6 ~/~ 1 \cdot 1 \cdot 1 \cdot 4 \cdot 1 ~\backslash~ 6 \\ 7 ~/~ 1 \cdot 5 \cdot 2 \cdot 9 \cdot 1 \cdot 1 ~\backslash~ 7 \\ 8 ~/~ 1 \cdot 6 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 ~\backslash~ 8 \\ 9 ~/~ 1 \cdot 7 \cdot 1 \cdot 25\cdot 1 \cdot 3 \cdot 1 \cdot 1 ~\backslash~ 9 \\ 10 ~/~ 1 \cdot 1 \cdot 1 \cdot 36\cdot 1 \cdot 2 \cdot 1 \cdot 8 \cdot 1 ~\backslash~ 10 \end{matrix}\) |
ASCII
Example * n o m * \ / * 1 . 1 * \ / \ / * 2 . 1 . 2 * \ / \ / \ / * 3 . 1 . 1 . 3 * \ / \ / \ / \ / * 4 . 1 . 2 . 1 . 4 * \ / \ / \ / \ / \ / * 5 . 1 . 3 . 1 . 1 . 5 * \ / \ / \ / \ / \ / \ / * 6 . 1 . 1 . 1 . 4 . 1 . 6 * \ / \ / \ / \ / \ / \ / \ / * 7 . 1 . 5 . 2 . 9 . 1 . 1 . 7 * \ / \ / \ / \ / \ / \ / \ / \ / * 8 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 8 * \ / \ / \ / \ / \ / \ / \ / \ / \ / * 9 . 1 . 7 . 1 . 25. 1 . 3 . 1 . 1 . 9 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 10 . 1 . 1 . 1 . 36. 1 . 2 . 1 . 8 . 1 . 10 * * Primal codes of finite partial functions on positive integers: * 1 = { } * 2 = 1:1 * 3 = 2:1 * 4 = 1:2 * 5 = 3:1 * 6 = 1:1 2:1 * 7 = 4:1 * 8 = 1:3 * 9 = 2:2 * 10 = 1:1 3:1 * 11 = 5:1 * 12 = 1:2 2:1 * 13 = 6:1 * 14 = 1:1 4:1 * 15 = 2:1 3:1 * 16 = 1:4 * 17 = 7:1 * 18 = 1:1 2:2 * 19 = 8:1 * 20 = 1:2 3:1
A106178
Wiki Table
1 | 1 | |||||||||||||||||||||||||||||||
2 | · | 2 | ||||||||||||||||||||||||||||||
3 | · | · | 3 | |||||||||||||||||||||||||||||
4 | · | 2 | · | 4 | ||||||||||||||||||||||||||||
5 | · | 3 | 1 | · | 5 | |||||||||||||||||||||||||||
6 | · | 1 | 1 | 4 | · | 6 | ||||||||||||||||||||||||||
7 | · | 5 | 2 | 9 | 1 | · | 7 | |||||||||||||||||||||||||
8 | · | 6 | 1 | 1 | 1 | 2 | · | 8 | ||||||||||||||||||||||||
9 | · | 7 | 1 | 25 | 1 | 3 | 1 | · | 9 | |||||||||||||||||||||||
10 | · | 1 | 1 | 36 | 1 | 2 | 1 | 8 | · | 10 | ||||||||||||||||||||||
11 | · | 1 | 1 | 49 | 1 | 5 | 1 | 27 | 1 | · | 11 | |||||||||||||||||||||
12 | · | 10 | 3 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | · | 12 | ||||||||||||||||||||
13 | · | 11 | 1 | 1 | 2 | 7 | 1 | 125 | 4 | 3 | 1 | · | 13 | |||||||||||||||||||
14 | · | 3 | 1 | 100 | 1 | 1 | 1 | 216 | 1 | 1 | 1 | 4 | · | 14 | ||||||||||||||||||
15 | · | 13 | 2 | 121 | 1 | 3 | 1 | 343 | 1 | 5 | 1 | 9 | 1 | · | 15 | |||||||||||||||||
16 | · | 14 | 1 | 9 | 1 | 10 | 1 | 1 | 1 | 6 | 1 | 2 | 1 | 2 | · | 16 |
TeX Smallmatrix
\(\begin{smallmatrix} &&&&&&&&&&&&&&& {\color{red}1} && {\color{red}1} \\ &&&&&&&&&&&&&& {\color{red}2} && \cdot & & {\color{red}2} \\ &&&&&&&&&&&&& {\color{red}3} && \cdot && \cdot && {\color{red}3} \\ &&&&&&&&&&&& {\color{red}4} && \cdot && 2 && \cdot && {\color{red}4} \\ &&&&&&&&&&& {\color{red}5} && \cdot && 3 && 1 && \cdot && {\color{red}5} \\ &&&&&&&&&& {\color{red}6} && \cdot && 1 && 1 && 4 && \cdot && {\color{red}6} \\ &&&&&&&&& {\color{red}7} && \cdot && 5 && 2 && 9 && 1 && \cdot && {\color{red}7} \\ &&&&&&&& {\color{red}8} && \cdot && 6 && 1 && 1 && 1 && 2 && \cdot && {\color{red}8} \\ &&&&&&& {\color{red}9} && \cdot && 7 && 1 && 25 && 1 && 3 && 1 && \cdot && {\color{red}9} \\ &&&&&& {\color{red}10} && \cdot && 1 && 1 && 36 && 1 && 2 && 1 && 8 && \cdot && {\color{red}10} \\ &&&&& {\color{red}11} && \cdot && 1 && 1 && 49 && 1 && 5 && 1 && 27 && 1 && \cdot && {\color{red}11} \\ &&&& {\color{red}12} && \cdot && 10 && 3 && 1 && 1 && 6 && 1 && 1 && 1 && 2 && \cdot && {\color{red}12} \\ &&& {\color{red}13} && \cdot && 11 && 1 && 1 && 2 && 7 && 1 && 125 && 4 && 3 && 1 && \cdot && {\color{red}13} \\ && {\color{red}14} && \cdot && 3 && 1 && 100 && 1 && 1 && 1 && 216 && 1 && 1 && 1 && 4 && \cdot && {\color{red}14} \\ & {\color{red}15} && \cdot && 13 && 2 && 121 && 1 && 3 && 1 && 343 && 1 && 5 && 1 && 9 && 1 && \cdot && {\color{red}15} \\ {\color{red}16} && \cdot && 14 && 1 && 9 && 1 && 10 && 1 && 1 && 1 && 6 && 1 && 2 && 1 && 2 && \cdot && {\color{red}16} \end{smallmatrix}\) |
ASCII
Example * n o m * \ / * 1 . 1 * \ / \ / * 2 . . 2 * \ / \ / \ / * 3 . . . 3 * \ / \ / \ / \ / * 4 . . 2 . . 4 * \ / \ / \ / \ / \ / * 5 . . 3 . 1 . . 5 * \ / \ / \ / \ / \ / \ / * 6 . . 1 . 1 . 4 . . 6 * \ / \ / \ / \ / \ / \ / \ / * 7 . . 5 . 2 . 9 . 1 . . 7 * \ / \ / \ / \ / \ / \ / \ / \ / * 8 . . 6 . 1 . 1 . 1 . 2 . . 8 * \ / \ / \ / \ / \ / \ / \ / \ / \ / * 9 . . 7 . 1 . 25. 1 . 3 . 1 . . 9 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 10 . . 1 . 1 . 36. 1 . 2 . 1 . 8 . . 10 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 11 . . 1 . 1 . 49. 1 . 5 . 1 . 27. 1 . . 11 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 12 . . 10. 3 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . . 12 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 13 . . 11. 1 . 1 . 2 . 7 . 1 .125. 4 . 3 . 1 . . 13 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 14 . . 3 . 1 .100. 1 . 1 . 1 .216. 1 . 1 . 1 . 4 . . 14 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 15 . . 13. 2 .121. 1 . 3 . 1 .343. 1 . 5 . 1 . 9 . 1 . . 15 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 16 . . 14. 1 . 9 . 1 . 10. 1 . 1 . 1 . 6 . 1 . 2 . 1 . 2 . . 16
A108352
Links
- Jon Awbrey, Primal Code Characteristic, n = 1 to 1000
- Jon Awbrey, Primal Code Characteristic, n = 1001 to 2000
- Jon Awbrey, Primal Code Characteristic, n = 2001 to 3000
TeX Array
\(\begin{array}{*{10}{l}} a(1) & = & 1 & \text{because} & (\circ~ 1)^1 & = & (\circ~ \varnothing)^1 & = & 1. \\ a(2) & = & 0 & \text{because} & (\circ~ 2)^k & = & (\circ~ 1\!:\!1)^k & = & 2, & \text{for all}~ k > 0. \\ a(3) & = & 2 & \text{because} & (\circ~ 3)^2 & = & (\circ~ 2\!:\!1)^2 & = & 1. \\ a(4) & = & 2 & \text{because} & (\circ~ 4 )^2 & = & (\circ~ 1\!:\!2)^2 & = &1. \\ a(5) & = & 2 & \text{because} & (\circ~ 5)^2 & = & (\circ~ 3\!:\!1)^2 & = & 1. \\ a(6) & = & 0 & \text{because} & (\circ~ 6)^k & = & (\circ~ 1\!:\!1 ~~ 2\!:\!1)^k & = & 6, & \text{for all}~ k > 0. \\ a(7) & = & 2 & \text{because} & (\circ~ 7)^2 & = & (\circ~ 4\!:\!1)^1 & = & 1. \\ a(8) & = & 2 & \text{because} & (\circ~ 8)^2 & = & (\circ~ 1\!:\!3)^1 & = & 1. \\ a(9) & = & 0 & \text{because} & (\circ~ 9)^k & = & (\circ~ 2\!:\!2)^k & = & 9, & \text{for all}~ k > 0. \\ a(10) & = & 0 & \text{because} & (\circ~ 10)^k & = & (\circ~ 1\!:\!1 ~~ 3\!:\!1)^k & = & 10, & \text{for all}~ k > 0. \end{array}\) |
ASCII
Example * a(1) = 1 because (1 o)^1 = ({ } o)^1 = 1. * a(2) = 0 because (2 o)^k = (1:1 o)^k = 2, for all positive k. * a(3) = 2 because (3 o)^2 = (2:1 o)^2 = 1. * a(4) = 2 because (4 o)^2 = (1:2 o)^2 = 1. * a(5) = 2 because (5 o)^2 = (3:1 o)^2 = 1. * a(6) = 0 because (6 o)^k = (1:1 2:1 o)^k = 6, for all positive k. * a(7) = 2 because (7 o)^2 = (4:1 o)^1 = 1. * a(8) = 2 because (8 o)^2 = (1:3 o)^1 = 1. * a(9) = 0 because (9 o)^k = (2:2 o)^k = 9, for all positive k. * a(10) = 0 because (10 o)^k = (1:1 3:1 o)^k = 10, for all positive k. * Detail of calculation for compositional powers of 12: * (12 o)^2 = (1:2 2:1) o (1:2 2:1) = (1:1 2:2) = 18 * (12 o)^3 = (1:1 2:2) o (1:2 2:1) = (1:2 2:1) = 12 * Detail of calculation for compositional powers of 20: * (20 o)^2 = (1:2 3:1) o (1:2 3:1) = (3:2) = 25 * (20 o)^3 = (3:2) o (1:2 3:1) = 1
A108371
Wiki Table
1 | 1 | |||||||||||||||||||||||||||||||
2 | 1 | 2 | ||||||||||||||||||||||||||||||
3 | 2 | 1 | 3 | |||||||||||||||||||||||||||||
4 | 3 | 2 | 1 | 4 | ||||||||||||||||||||||||||||
5 | 4 | 1 | 2 | 1 | 5 | |||||||||||||||||||||||||||
6 | 5 | 1 | 1 | 2 | 1 | 6 | ||||||||||||||||||||||||||
7 | 6 | 1 | 1 | 1 | 2 | 1 | 7 | |||||||||||||||||||||||||
8 | 7 | 6 | 1 | 1 | 1 | 2 | 1 | 8 | ||||||||||||||||||||||||
9 | 8 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 9 | |||||||||||||||||||||||
10 | 9 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 10 | ||||||||||||||||||||||
11 | 10 | 9 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 11 | |||||||||||||||||||||
12 | 11 | 10 | 9 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 12 | ||||||||||||||||||||
13 | 12 | 1 | 10 | 9 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 13 | |||||||||||||||||||
14 | 13 | 18 | 1 | 10 | 9 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 14 | ||||||||||||||||||
15 | 14 | 1 | 12 | 1 | 10 | 9 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 15 | |||||||||||||||||
16 | 15 | 14 | 1 | 18 | 1 | 10 | 9 | 1 | 1 | 6 | 1 | 1 | 1 | 2 | 1 | 16 |
ASCII
Example * Table: T(n,k) = (n o)^k * T(n,k) * \ / * 1 . 1 * \ / \ / * 2 . 1 . 2 * \ / \ / \ / * 3 . 2 . 1 . 3 * \ / \ / \ / \ / * 4 . 3 . 2 . 1 . 4 * \ / \ / \ / \ / \ / * 5 . 4 . 1 . 2 . 1 . 5 * \ / \ / \ / \ / \ / \ / * 6 . 5 . 1 . 1 . 2 . 1 . 6 * \ / \ / \ / \ / \ / \ / \ / * 7 . 6 . 1 . 1 . 1 . 2 . 1 . 7 * \ / \ / \ / \ / \ / \ / \ / \ / * 8 . 7 . 6 . 1 . 1 . 1 . 2 . 1 . 8 * \ / \ / \ / \ / \ / \ / \ / \ / \ / * 9 . 8 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 9 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 10 . 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 10 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 11 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 11 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 12 . 11. 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 12 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 13 . 12. 1 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 13 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 14 . 13. 18. 1 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 14 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 15 . 14. 1 . 12. 1 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 15 * \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / * 16 . 15. 14. 1 . 18. 1 . 10. 9 . 1 . 1 . 6 . 1 . 1 . 1 . 2 . 1 . 16
A109300
JPEG
\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}\) |
\(\begin{array}{l} 2\!:\!2 \\ 9 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}\) |
ASCII
Example * Table of Rotes and Primal Functions for Positive Integers of Rote Height 2 * * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | | | * o-o o-o o-o o-o o---o o-o o-o o-o o---o o-o o---o * | | | | | | | | | | | * O O O===O O O=====O O===O O=====O * * 2:1 1:2 1:1 2:1 2:2 1:2 2:1 1:1 2:2 1:2 2:2 * * 3 4 6 9 12 18 36 *
A109301
JPEG
\(\begin{array}{l} \varnothing \\ 1 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}\) |
\(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\) |
\(\begin{array}{l} 2\!:\!2 \\ 9 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!1 \\ 10 \end{array}\) |
\(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 \\ 12 \end{array}\) |
\(\begin{array}{l} 6\!:\!1 \\ 13 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 4\!:\!1 \\ 14 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 3\!:\!1 \\ 15 \end{array}\) |
\(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\) |
\(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!2 \\ 18 \end{array}\) |
\(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 3\!:\!1 \\ 20 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 4\!:\!1 \\ 21 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 5\!:\!1 \\ 22 \end{array}\) |
\(\begin{array}{l} 9\!:\!1 \\ 23 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 ~~ 2\!:\!1 \\ 24 \end{array}\) |
\(\begin{array}{l} 3\!:\!2 \\ 25 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 6\!:\!1 \\ 26 \end{array}\) |
\(\begin{array}{l} 2\!:\!3 \\ 27 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 4\!:\!1 \\ 28 \end{array}\) |
\(\begin{array}{l} 10\!:\!1 \\ 29 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 30 \end{array}\) |
\(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\) |
\(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 5\!:\!1 \\ 33 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 7\!:\!1 \\ 34 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 ~~ 4\!:\!1 \\ 35 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!2 \\ 36 \end{array}\) |
\(\begin{array}{l} 12\!:\!1 \\ 37 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 8\!:\!1 \\ 38 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 6\!:\!1 \\ 39 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 ~~ 3\!:\!1 \\ 40 \end{array}\) |
\(\begin{array}{l} 13\!:\!1 \\ 41 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 ~~ 4\!:\!1 \\ 42 \end{array}\) |
\(\begin{array}{l} 14\!:\!1 \\ 43 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 5\!:\!1 \\ 44 \end{array}\) |
\(\begin{array}{l} 2\!:\!2 ~~ 3\!:\!1 \\ 45 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 9\!:\!1 \\ 46 \end{array}\) |
\(\begin{array}{l} 15\!:\!1 \\ 47 \end{array}\) |
\(\begin{array}{l} 1\!:\!4 ~~ 2\!:\!1 \\ 48 \end{array}\) |
\(\begin{array}{l} 4\!:\!2 \\ 49 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 3\!:\!2 \\ 50 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 7\!:\!1 \\ 51 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 6\!:\!1 \\ 52 \end{array}\) |
\(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 2\!:\!3 \\ 54 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 ~~ 5\!:\!1 \\ 55 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 ~~ 4\!:\!1 \\ 56 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 ~~ 8\!:\!1 \\ 57 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 ~~ 10\!:\!1 \\ 58 \end{array}\) |
\(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 ~~ 2\!:\!1 ~~ 3\!:\!1 \\ 60 \end{array}\) |
ASCII
Comment * Table of Rotes and Primal Functions for Positive Integers from 1 to 40 * * o-o * | * o-o o-o o-o * | | | * o-o o-o o-o o-o * | | | | * O O O O O * * { } 1:1 2:1 1:2 3:1 * * 1 2 3 4 5 * * * o-o o-o o-o * | | | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o---o o-o o-o * | | | | | | | * O===O O O O O===O * * 1:1 2:1 4:1 1:3 2:2 1:1 3:1 * * 6 7 8 9 10 * * * o-o * | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * o-o o-o o-o o===o-o o-o o-o o-o o-o * | | | | | | | | * O O=====O O O===O O===O * * 5:1 1:2 2:1 6:1 1:1 4:1 2:1 3:1 * * 11 12 13 14 15 * * * o-o o-o * | | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o---o o-o o-o o-o * | | | | | | | * O O O===O O O=====O * * 1:4 7:1 1:1 2:2 8:1 1:2 3:1 * * 16 17 18 19 20 * * * o-o * | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o---o o-o o-o o-o o-o * | | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o---o * | | | | | | | | * O===O O===O O O=====O O * * 2:1 4:1 1:1 5:1 9:1 1:3 2:1 3:2 * * 21 22 23 24 25 * * * o-o * | * o-o o-o o-o o-o o-o * | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | * o-o o===o-o o---o o-o o-o o===o-o o-o o-o o-o * | | | | | | | | | * O===O O O=====O O O===O===O * * 1:1 6:1 2:3 1:2 4:1 10:1 1:1 2:1 3:1 * * 26 27 28 29 30 * * * o-o * | * o-o o-o o-o o-o * | | | | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * O O O===O O===O O===O * * 11:1 1:5 2:1 5:1 1:1 7:1 3:1 4:1 * * 31 32 33 34 35 * * * o-o * | * o-o o-o o-o o-o o-o o-o * | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | | | | * o-o o---o o=====o-o o-o o-o o-o o===o-o o-o o-o * | | | | | | | | | * O=====O O O===O O===O O=====O * * 1:2 2:2 12:1 1:1 8:1 2:1 6:1 1:3 3:1 * * 36 37 38 39 40 * * In these Figures, "extended lines of identity" like o===o * indicate identified nodes and capital O is the root node. * The rote height in gammas is found by finding the number * of graphs of the following shape between the root and one * of the highest nodes of the tree: * o--o * | * o * A sequence like this, that can be regarded as a nonnegative integer * measure on positive integers, may have as many as 3 other sequences * associated with it. Given that the fiber of a function f at n is all * the domain elements that map to n, we always have the fiber minimum * or minimum inverse function and may also have the fiber cardinality * and the fiber maximum or maximum inverse function. For A109301, the * minimum inverse is A007097(n) = min {k : A109301(k) = n}, giving the * first positive integer whose rote height is n, the fiber cardinality * is A109300, giving the number of positive integers of rote height n, * while the maximum inverse, g(n) = max {k : A109301(k) = n}, giving * the last positive integer whose rote height is n, has the following * initial terms: g(0) = { } = 1, g(1) = 1:1 = 2, g(2) = 1:2 2:2 = 36, * while g(3) = 1:36 2:36 3:36 4:36 6:36 9:36 12:36 18:36 36:36 = * (2 3 5 7 13 23 37 61 151)^36 = 21399271530^36 = roughly * 7.840858554516122655953405327738 x 10^371.
A111795
JPEG
\(\begin{array}{l} \varnothing \\ 1 \end{array}\) |
\(\begin{array}{l} 1\!:\!1 \\ 2 \end{array}\) |
\(\begin{array}{l} 2\!:\!1 \\ 3 \end{array}\) |
\(\begin{array}{l} 1\!:\!2 \\ 4 \end{array}\) |
\(\begin{array}{l} 3\!:\!1 \\ 5 \end{array}\) |
\(\begin{array}{l} 4\!:\!1 \\ 7 \end{array}\) |
\(\begin{array}{l} 1\!:\!3 \\ 8 \end{array}\) |
\(\begin{array}{l} 5\!:\!1 \\ 11 \end{array}\) |
\(\begin{array}{l} 1\!:\!4 \\ 16 \end{array}\) |
\(\begin{array}{l} 7\!:\!1 \\ 17 \end{array}\) |
\(\begin{array}{l} 8\!:\!1 \\ 19 \end{array}\) |
\(\begin{array}{l} 11\!:\!1 \\ 31 \end{array}\) |
\(\begin{array}{l} 1\!:\!5 \\ 32 \end{array}\) |
\(\begin{array}{l} 16\!:\!1 \\ 53 \end{array}\) |
\(\begin{array}{l} 17\!:\!1 \\ 59 \end{array}\) |
ASCII
Example * Tables of Rotes and Primal Codes for a(1) to a(9) * * o-o * | * o-o o-o o-o o-o o-o * | | | | | * o-o o-o o-o o-o o-o o-o o-o * | | | | | | | * o-o o-o o-o o-o o-o o-o o-o o-o * | | | | | | | | * O O O O O O O O O * * { } 1:1 2:1 1:2 3:1 4:1 1:3 5:1 1:4 * * 1 2 3 4 5 7 8 11 16 *
A111800
TeX + JPEG
\(\text{Writing}~ \operatorname{prime}(i)^j ~\text{as}~ i\!:\!j, 2500 = 4 \cdot 625 = 2^2 5^4 = 1\!:\!2 ~~ 3\!:\!4 ~\text{has the following rote:}\)
\(\text{So}~ a(2500) = a(1\!:\!2 ~~ 3\!:\!4) = a(1) + a(2) + a(3) + a(4) + 1 = 1 + 3 + 5 + 5 + 1 = 15.\)
ASCII
Example * Writing prime(i)^j as i:j and using equal signs between identified nodes: * 2500 = 4 * 625 = 2^2 5^4 = 1:2 3:4 has the following rote: * * o-o o-o * | | * o-o o-o o-o * | | | * o-o o---o * | | * O=====O * * So a(2500) = a(1:2 3:4) = a(1)+a(2)+a(3)+a(4)+1 = 1+3+5+5+1 = 15.