Cactus Rules
MyWikiBiz, Author Your Legacy — Monday January 06, 2025
Jump to navigationJump to search
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 1 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o With an eye toward the aims of the NKS Forum, I've begun to work out a translation of the "elementary cellular automaton rules" (ECAR's), in effect, just the boolean functions of abstract type q : B^3 -> B, into cactus language, and I'll post a selection of my working notes here. By way of the briefest possible reminder, this cactus syntax, in its existential interpretation and its traverse-string redaction, uses just two series of k-adic connectives, first, the concatenation of k expressions is read as their k-adic logical conjunction, second, a bracket of the form (e_1, ..., e_k) is read to say that exactly one of the k expressions e_1, ..., e_k is false. I may sometimes refer to this bracket as a k-adic "boundary operator" or a k-place "cactus lobe". Reference Material: http://atlas.wolfram.com/ http://atlas.wolfram.com/01/01/ http://atlas.wolfram.com/01/01/views/3/TableView.html http://atlas.wolfram.com/01/01/views/87/TableView.html http://atlas.wolfram.com/01/01/views/172/TableView.html Incidental Musement: http://www.pinball.com/games/cactus/ o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 2 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o One of the first things I note is that several whole families of otherwise enigmatic and obscurely expressed rules take on remarkably simple and transparently related expressions in the cactus syntax. For example, Table 1 exhibits the cactus syntax for an especially interesting family of ECAR's, that is, boolean maps of the concrete shape [p, q, r] -> [q], or the abstract type q_j : B^3 -> B. Table 1. A Family of Propositional Forms On Three Variables o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_22 | q_00010110 | 0 0 0 1 0 1 1 0 | ((p), (q), (r)) | | | | | | | q_41 | q_00101001 | 0 0 1 0 1 0 0 1 | ((p), (q), r ) | | | | | | | q_73 | q_01001001 | 0 1 0 0 1 0 0 1 | ((p), q , (r)) | | | | | | | q_134 | q_10000110 | 1 0 0 0 0 1 1 0 | ((p), q , r ) | | | | | | | q_97 | q_01100001 | 0 1 1 0 0 0 0 1 | ( p , (q), (r)) | | | | | | | q_146 | q_10010010 | 1 0 0 1 0 0 1 0 | ( p , (q), r ) | | | | | | | q_148 | q_10010100 | 1 0 0 1 0 1 0 0 | ( p , q , (r)) | | | | | | | q_104 | q_01101000 | 0 1 1 0 1 0 0 0 | ( p , q , r ) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_233 | q_11101001 | 1 1 1 0 1 0 0 1 | (((p), (q), (r))) | | | | | | | q_214 | q_11010110 | 1 1 0 1 0 1 1 0 | (((p), (q), r )) | | | | | | | q_182 | q_10110110 | 1 0 1 1 0 1 1 0 | (((p), q , (r))) | | | | | | | q_121 | q_01111001 | 0 1 1 1 1 0 0 1 | (((p), q , r )) | | | | | | | q_158 | q_10011110 | 1 0 0 1 1 1 1 0 | (( p , (q), (r))) | | | | | | | q_109 | q_01101101 | 0 1 1 0 1 1 0 1 | (( p , (q), r )) | | | | | | | q_107 | q_01101011 | 0 1 1 0 1 0 1 1 | (( p , q , (r))) | | | | | | | q_151 | q_10010111 | 1 0 0 1 0 1 1 1 | (( p , q , r )) | | | | | | o---------o------------o-----------------o-------------------o I invite the Reader to compare these expressions with their corresponding numbers, the same boolean functions expressed in terms of operators from the set {And, Or, Xor, Not}, for example, as shown in the "Wolfram Atlas of Simple Programs": http://atlas.wolfram.com/01/01/views/172/TableView.html o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 3 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Here are the parse-graph portraits of the family of cacti that we examined last time, listed in complementary pairs. o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ( p , q , r ) ` | ` ` ` ` | `(( p , q , r ))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_104 ` ` ` | ` ` ` ` | ` ` ` q_151 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` ` ` ` ` | | ` ` ` p ` ` ` ` ` | ` ` ` ` | ` ` ` | q r ` ` ` | | ` ` ` o ` ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | q r ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p), q , r ) ` | ` ` ` ` | `(((p), q , r ))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_134 ` ` ` | ` ` ` ` | ` ` ` q_121 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` q ` ` ` ` | ` ` ` ` | ` ` ` p | r ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` p | r ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ( p ,(q), r ) ` | ` ` ` ` | `(( p ,(q), r ))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_146 ` ` ` | ` ` ` ` | ` ` ` q_109 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` p q | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` p q | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ( p , q ,(r)) ` | ` ` ` ` | `(( p , q ,(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_148 ` ` ` | ` ` ` ` | ` ` ` q_107 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o o ` ` ` ` | | ` ` ` p q ` ` ` ` | ` ` ` ` | ` ` ` | | r ` ` ` | | ` ` ` o o ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | | r ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p),(q), r ) ` | ` ` ` ` | `(((p),(q), r ))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_41` ` ` ` | ` ` ` ` | ` ` ` q_214 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` | q | ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | q | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p), q ,(r)) ` | ` ` ` ` | `(((p), q ,(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_73` ` ` ` | ` ` ` ` | ` ` ` q_182 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o o ` ` ` | | ` ` ` ` q r ` ` ` | ` ` ` ` | ` ` ` p | | ` ` ` | | ` ` ` ` o o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` p | | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ( p ,(q),(r)) ` | ` ` ` ` | `(( p ,(q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_97` ` ` ` | ` ` ` ` | ` ` ` q_158 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o o o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` | | | ` ` ` | | ` ` ` o o o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | | | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p),(q),(r)) ` | ` ` ` ` | `(((p),(q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_22` ` ` ` | ` ` ` ` | ` ` ` q_233 ` ` ` | o-------------------o ` ` ` ` o-------------------o As I work through the 256 ECAR's or functions q_j : B^3 -> B, I will keep an updated copy of my worksheet as an attachment to the first posting on this thread at the NKS Forum website: Re: http://forum.wolframscience.com/showthread.php?s=&postid=810#post810 In: http://forum.wolframscience.com/showthread.php?s=&threadid=256 The interested reader is invited to help check this work, as errors are almost inevitable in this type of exercise. Plus, I can't always get expressions that are as elegant as I might like, and it may be that other eyes would see forms more economical than the ones that strike me first. o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 4 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Given the novelty of the cactus calculus, it is probably wise to run through a representative sample of the forms just set down, to note some principles of interpretation, and to pick up a few clues as to their ordinary language renderings. Throughout the rest of this reading it will be good to recall that "truth", or a boolean valaue of 1, is represented by a blank string or a blank-labeled node, while "falsity", or a boolean value of 0, is rendered as the string "()" or an unlabeled terminal edge, a "spike". o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ( p , q , r ) ` | ` ` ` ` | `(( p , q , r ))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_104 ` ` ` | ` ` ` ` | ` ` ` q_151 ` ` ` | o-------------------o ` ` ` ` o-------------------o The function q_104 : B^3 -> B is a basic 3-lobe, interpreted as the "just one false" operator on three boolean variables, and the function q_151 is its boolean complement or its exact negation. o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` ` ` ` ` | | ` ` ` p ` ` ` ` ` | ` ` ` ` | ` ` ` | q r ` ` ` | | ` ` ` o ` ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | q r ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p), q , r ) ` | ` ` ` ` | `(((p), q , r ))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_134 ` ` ` | ` ` ` ` | ` ` ` q_121 ` ` ` | o-------------------o ` ` ` ` o-------------------o The operation of q_134 can be understood by asking what happens if p is true, in effect, if the label "p" disappears, leaving only its supporting spike. That spike, the unique false argument on the lobe, punctures the lobe beneath, if you will, and what abides is the statement "q r", that is, "q and r". On the other hand, if p is (), then the branch (p) appears to be (()), which reduces to true, and so it disappears instead, leaving just (q, r), which is tantamount to stating that q is not equal to r. In sum the cases are: p q r, (p) q (r), (p)(q) r. Once again, q_121 is just the complement of q_134. o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o o o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` | | | ` ` ` | | ` ` ` o o o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | | | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p),(q),(r)) ` | ` ` ` ` | `(((p),(q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_22` ` ` ` | ` ` ` ` | ` ` ` q_233 ` ` ` | o-------------------o ` ` ` ` o-------------------o The rest of this gang can be dispatched by the same method. But I want to single out for special mention the form q_22, the "just one true" operator that is especially handy when the time comes to specify a partition of the universe into a number of mutually exclusive and exhaustive territories, here envisioned to salute the flags p, q, r, respectively. o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 5 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o So long as we're seeing the sights at Cactus Junction, we might as well take a gander at a computational way to assay the import of any ole cactus expression that comes down the pike. Way out here, and elsewhere, too, the computational clarification of a formal expression is claimed to yield its canonical or its "normal" form. Finer distinctions can be weighed, of course, and there is always the problem of just how, exactly, and, indeed, even whether such forms will be forthcoming from a given cut of syntax for a given objective domain, or any other wide open space. But the notion of a "normal form" is cast in the right direction, and so it'll do for now. By way of example, let's examine the subtype of cactoid expression that is typified by q_97 and its complement q_158, and that hardly got its just deserts in the way of attention the last time around. o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o o ` ` ` | | ` ` ` ` q r ` ` ` | ` ` ` ` | ` ` ` p | | ` ` ` | | ` ` ` ` o o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` p | | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ( p ,(q),(r)) ` | ` ` ` ` | `(( p ,(q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_97` ` ` ` | ` ` ` ` | ` ` ` q_158 ` ` ` | o-------------------o ` ` ` ` o-------------------o Cactus forms of the generic shape (g, (s_1), ..., (s_k)) are those that arise when we have a "genus and species" or a "pie chart" arrangement of logical features, where g is the genus and the k species are s_1 through s_k, or g is the whole pie and the slices are the s_j. o-------------------------------------------------o | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` s_1 ` s_k ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` `o` ` `o` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` `g` ` `|` ` `|` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` `o-----o-...-o` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` \ ` ` ` ` / ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` `\` ` ` `/` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` \ ` ` / ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` `\` `/` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | o-------------------------------------------------o We can reason out the meaning of all such expressions by using the case analysis tactic that we used before. If g is true, then it's just like "g" wasn't there at all, and the expression comes down to the case below: o-------------------------------------------------o | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` s_1 ` ` s_k ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` `o` ` ` `o` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` `|` ` ` `|` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` `o--...--o` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` \ ` ` / ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` `\` `/` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | o-------------------------------------------------o But this expresses the "just one true" condition that partitions the remaining space, that is to say, the space where g is true, into k sectors where each of the s_j in its own turn is true. On the other hand, in the case that g is false, we are left with a (k+1)-lobe that is known to bear this one bare spike: o-------------------------------------------------o | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` s_1 ` s_k ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` `o` ` `o` ` `o` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` `|` ` `|` ` `|` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` `o-----o-...-o` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` \ ` ` ` ` / ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` `\` ` ` `/` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` \ ` ` / ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` `\` `/` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` \ / ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` `@` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | o-------------------------------------------------o If that expression as a whole is going to turn out to be true, then there can be only one expression that evaluates to false on its argument list, and since we already have it in custody, we know that the remaining arguments, (s_1), ..., (s_k), will all have to be true. In effect, the spike collapses the lobe to a node, leaving a conjunction of the negations of the s_j. o-------------------------------------------------o | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` `s_1` ` `s_k` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` o `...` o ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` `\` | `/` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` \ | / ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` `\|/` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` @ ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | o-------------------------------------------------o In summation, we have the following interpretation: If g is true, then exactly one of the s_j is true; if g is false, then all of the s_j are false, too. That is not yet a method that would be amenable to computational routine, but it does get us part way. o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 6 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Within each space of boolean functions {f : B^k -> B}, altogether ranking a cardinality of 2^(2^k) functions, there are several standard subsets of cardinality 2^k that rate special mention and study. One such subset is the space of linear functions, known algebraically as the set of "homomorphisms" {hom : B^k -> B} or the "dual space" X*, because it is dual to the coordinate space X of "points" or "vectors" in B^k. In the present setting, where k = 3, we may expect to find 2^3 = 8 linear functions of the abstract type h : B^3 -> B. Table 2 shows the q_j that are linear functions, together with their boolean complements or their logical negations. Table 2. Linear Propositions and Their Complements o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_0 | q_00000000 | 0 0 0 0 0 0 0 0 | ( ) | | | | | | | q_240 | q_11110000 | 1 1 1 1 0 0 0 0 | p | | | | | | | q_204 | q_11001100 | 1 1 0 0 1 1 0 0 | q | | | | | | | q_170 | q_10101010 | 1 0 1 0 1 0 1 0 | r | | | | | | | q_60 | q_00111100 | 0 0 1 1 1 1 0 0 | (p , q) | | | | | | | q_90 | q_01011010 | 0 1 0 1 1 0 1 0 | (p , r) | | | | | | | q_102 | q_01100110 | 0 1 1 0 0 1 1 0 | (q , r) | | | | | | | q_150 | q_10010110 | 1 0 0 1 0 1 1 0 | (p , (q , r)) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_255 | q_11111111 | 1 1 1 1 1 1 1 1 | (( )) | | | | | | | q_15 | q_00001111 | 0 0 0 0 1 1 1 1 | (p) | | | | | | | q_51 | q_00110011 | 0 0 1 1 0 0 1 1 | (q) | | | | | | | q_85 | q_01010101 | 0 1 0 1 0 1 0 1 | (r) | | | | | | | q_195 | q_11000011 | 1 1 0 0 0 0 1 1 | ((p , q)) | | | | | | | q_165 | q_10100101 | 1 0 1 0 0 1 0 1 | ((p , r)) | | | | | | | q_153 | q_10011001 | 1 0 0 1 1 0 0 1 | ((q , r)) | | | | | | | q_105 | q_01101001 | 0 1 1 0 1 0 0 1 | ((p , (q , r))) | | | | | | o---------o------------o-----------------o-------------------o The Figures that follow give a representative selection of the corresponding cacti in all their greenest glory. o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `( )` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_0` ` ` ` | ` ` ` ` | ` ` ` q_255 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` p ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` p ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` ` p ` ` ` ` | ` ` ` ` | ` ` ` `(p)` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_240 ` ` ` | ` ` ` ` | ` ` ` q_15` ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p , q)` ` ` | ` ` ` ` | ` ` ((p , q)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_60` ` ` ` | ` ` ` ` | ` ` ` q_195 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q ` r ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o---o ` ` | | ` ` ` ` q ` r ` ` | ` ` ` ` | ` ` ` p `\ /` ` ` | | ` ` ` ` o---o ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` p `\ /` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p , (q , r)) ` | ` ` ` ` | `((p , (q , r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_150 ` ` ` | ` ` ` ` | ` ` ` q_105 ` ` ` | o-------------------o ` ` ` ` o-------------------o Beannachtaí na Féile Pádraig oraibh go leir! o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 7 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Had I been thinking ahead, I might have mentioned this first, but now that aspects of algebra and geometry have intruded on our logical paradise, in the guise of the dual space X*, let's give belated notice to one family of propositions that have been basic to our enterprise all along, whether we noticed them or not. In a k-dimensional universe of discourse X% = [x_1, ..., x_k] the position space X = <|x_1, ..., x_k|> is isomorphic to B^k and the proposition space X^ = (X -> B) = {f : X -> B} bears the abstract type B^k -> B. In algebra and geometry, as a rule, one tends to take position spaces and function spaces together in pairs, and so we assign the universe X% a "stereotype" of <B^k, B^k -> B>, or B^k +-> B, for short. I like to think of these spaces as the "paint layer" X and "draw layer" X^ of the universe X%. What I need to make a point of at this point is that the k-set of logical features !X! = {x_1, ..., x_k} that we invoke as the basis of the universe of discourse also constitutes an important family of propositions x_j : B^k -> B, for j = 1 to k. These are called by any one of several different names: "basic propositions", "coordinate projections", or "simple propositions". Table 0 accords this family of simple propositions their formal recognition, for the present case of 3 dimensions. Table 0. Simple Propositions o---------o------------o-----------------o-------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_240 ` | q_11110000 | 1 1 1 1 0 0 0 0 | ` `p` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_204 ` | q_11001100 | 1 1 0 0 1 1 0 0 | ` ` ` ` q ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_170 ` | q_10101010 | 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o Of course, we've already seen this 3-set of basic propositions numbered among the (2^3)-set of linear propositions in Table 2. Additional discussion of these underpinnings can be found here: | Jon Awbrey, "Differential Logic and Dynamic Systems" | http://stderr.org/pipermail/inquiry/2003-May/thread.html#478 | http://stderr.org/pipermail/inquiry/2003-June/thread.html#553 Especially: DLOG D2. http://stderr.org/pipermail/inquiry/2003-May/000480.html DLOG D5. http://stderr.org/pipermail/inquiry/2003-May/000483.html With that out of the way, I'll try to get back to the main event next time. o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 8 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o In any k-dimensional universe of discourse X% = [x_1, ..., x_k] there are two other (2^k)-clans of propositions that ordinarily merit special attention. These are the "positive" propositions and the "singular" propositions, tabulated for the present case k = 3 in Tables 3 and 4, respectively, as usual throwing in the logical complements just for good measure. Table 3. Positive Propositions and Their Complements o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_255 | q_11111111 | 1 1 1 1 1 1 1 1 | (( )) | | | | | | | q_240 | q_11110000 | 1 1 1 1 0 0 0 0 | p | | | | | | | q_204 | q_11001100 | 1 1 0 0 1 1 0 0 | q | | | | | | | q_170 | q_10101010 | 1 0 1 0 1 0 1 0 | r | | | | | | | q_192 | q_11000000 | 1 1 0 0 0 0 0 0 | p q | | | | | | | q_160 | q_10100000 | 1 0 1 0 0 0 0 0 | p r | | | | | | | q_136 | q_10001000 | 1 0 0 0 1 0 0 0 | q r | | | | | | | q_128 | q_10000000 | 1 0 0 0 0 0 0 0 | p q r | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_0 | q_00000000 | 0 0 0 0 0 0 0 0 | ( ) | | | | | | | q_15 | q_00001111 | 0 0 0 0 1 1 1 1 | (p) | | | | | | | q_51 | q_00110011 | 0 0 1 1 0 0 1 1 | (q) | | | | | | | q_85 | q_01010101 | 0 1 0 1 0 1 0 1 | (r) | | | | | | | q_63 | q_00111111 | 0 0 1 1 1 1 1 1 | (p q) | | | | | | | q_95 | q_01011111 | 0 1 0 1 1 1 1 1 | (p r) | | | | | | | q_119 | q_01110111 | 0 1 1 1 0 1 1 1 | (q r) | | | | | | | q_127 | q_01111111 | 0 1 1 1 1 1 1 1 | (p q r) | | | | | | o---------o------------o-----------------o-------------------o Table 4. Singular Propositions and Their Complements o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_1 | q_00000001 | 0 0 0 0 0 0 0 1 | (p) (q) (r) | | | | | | | q_2 | q_00000010 | 0 0 0 0 0 0 1 0 | (p) (q) r | | | | | | | q_4 | q_00000100 | 0 0 0 0 0 1 0 0 | (p) q (r) | | | | | | | q_8 | q_00001000 | 0 0 0 0 1 0 0 0 | (p) q r | | | | | | | q_16 | q_00010000 | 0 0 0 1 0 0 0 0 | p (q) (r) | | | | | | | q_32 | q_00100000 | 0 0 1 0 0 0 0 0 | p (q) r | | | | | | | q_64 | q_01000000 | 0 1 0 0 0 0 0 0 | p q (r) | | | | | | | q_128 | q_10000000 | 1 0 0 0 0 0 0 0 | p q r | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_254 | q_11111110 | 1 1 1 1 1 1 1 0 | ((p) (q) r)) | | | | | | | q_253 | q_11111101 | 1 1 1 1 1 1 0 1 | ((p) (q) r ) | | | | | | | q_251 | q_11111011 | 1 1 1 1 1 0 1 1 | ((p) q (r)) | | | | | | | q_247 | q_11110111 | 1 1 1 1 0 1 1 1 | ((p) q r ) | | | | | | | q_239 | q_11101111 | 1 1 1 0 1 1 1 1 | ( p (q) (r)) | | | | | | | q_223 | q_11011111 | 1 1 0 1 1 1 1 1 | ( p (q) r ) | | | | | | | q_191 | q_10111111 | 1 0 1 1 1 1 1 1 | ( p q (r)) | | | | | | | q_127 | q_01111111 | 0 1 1 1 1 1 1 1 | ( p q r ) | | | | | | o---------o------------o-----------------o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 9 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o In the language of cacti, as in Peirce's existential graphs, the implication p => q takes the form (p (q)), which can be parsed in a revealing manner as "not p without q". Thus it forms the counterpoint to its counter-exemplary form, p (q), which may be parsed as "p without q", or just "p and not q". The parse-graph of (p (q)) is a particular type of tree, that my school of thought in graph theory nomenclates as a "painted and rooted tree" (PART). The symbols from the alphabet !X! of logical marks, in our case, "p", "q", "r", are called "paints" as a way of signifying that one can put as many of them as one likes on a node, or none at all, and that there is no requirement to use all of the paints of the given palette !X! on any particular graph. In my etchings, the root node is singled out with the amphora sign "@". The graph of a simple implication can be drawn in any way that a free rooted tree can be, but it is frequently convenient to portray it as we see below, partly because of how often we find ourselves linking implications in stepwise series. o-------------------------------------------------o | | | p q | | o-----------o | | \ | | \ | | \ | | \ | | \ | | @ | | | o-------------------------------------------------o | ( p ( q )) | o-------------------------------------------------o Table 5 shows a number of ECAR's that have the form of simple implications or their logical complements. Table 5. Variations on a Theme of Implication o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_207 | q_11001111 | 1 1 0 0 1 1 1 1 | (p (q)) | | | | | | | q_175 | q_10101111 | 1 0 1 0 1 1 1 1 | (p (r)) | | | | | | | q_187 | q_10111011 | 1 0 1 1 1 0 1 1 | (q (r)) | | | | | | | q_243 | q_11110011 | 1 1 1 1 0 0 1 1 | ((p) q) | | | | | | | q_245 | q_11110101 | 1 1 1 1 0 1 0 1 | ((p) r) | | | | | | | q_221 | q_11011101 | 1 1 0 1 1 1 0 1 | ((q) r) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_48 | q_00110000 | 0 0 1 1 0 0 0 0 | p (q) | | | | | | | q_80 | q_01010000 | 0 1 0 1 0 0 0 0 | p (r) | | | | | | | q_68 | q_01000100 | 0 1 0 0 0 1 0 0 | q (r) | | | | | | | q_12 | q_00001100 | 0 0 0 0 1 1 0 0 | (p) q | | | | | | | q_10 | q_00001010 | 0 0 0 0 1 0 1 0 | (p) r | | | | | | | q_34 | q_00100010 | 0 0 1 0 0 0 1 0 | (q) r | | | | | | o---------o------------o-----------------o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 10 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 6. More Variations on a Theme of Implication o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_176 | q_10110000 | 1 0 1 1 0 0 0 0 | p (q (r)) | | | | | | | q_208 | q_11010000 | 1 1 0 1 0 0 0 0 | p (r (q)) | | | | | | | q_11 | q_00001011 | 0 0 0 0 1 0 1 1 | (p) (q (r)) | | | | | | | q_13 | q_00001101 | 0 0 0 0 1 1 0 1 | (p) (r (q)) | | | | | | | q_140 | q_10001100 | 1 0 0 0 1 1 0 0 | q (p (r)) | | | | | | | q_196 | q_11000100 | 1 1 0 0 0 1 0 0 | q (r (p)) | | | | | | | q_35 | q_00100011 | 0 0 1 0 0 0 1 1 | (q) (p (r)) | | | | | | | q_49 | q_00110001 | 0 0 1 1 0 0 0 1 | (q) (r (p)) | | | | | | | q_138 | q_10001010 | 1 0 0 0 1 0 1 0 | r (p (q)) | | | | | | | q_162 | q_10100010 | 1 0 1 0 0 0 1 0 | r (q (p)) | | | | | | | q_69 | q_01000101 | 0 1 0 0 0 1 0 1 | (r) (p (q)) | | | | | | | q_81 | q_01010001 | 0 1 0 1 0 0 0 1 | (r) (q (p)) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_79 | q_01001111 | 0 1 0 0 1 1 1 1 | ( p (q (r))) | | | | | | | q_47 | q_00101111 | 0 0 1 0 1 1 1 1 | ( p (r (q))) | | | | | | | q_244 | q_11110100 | 1 1 1 1 0 1 0 0 | ((p) (q (r))) | | | | | | | q_242 | q_11110010 | 1 1 1 1 0 0 1 0 | ((p) (r (q))) | | | | | | | q_115 | q_01110011 | 0 1 1 1 0 0 1 1 | ( q (p (r))) | | | | | | | q_59 | q_00111011 | 0 0 1 1 1 0 1 1 | ( q (r (p))) | | | | | | | q_220 | q_11011100 | 1 1 0 1 1 1 0 0 | ((q) (p (r))) | | | | | | | q_206 | q_11001110 | 1 1 0 0 1 1 1 0 | ((q) (r (p))) | | | | | | | q_117 | q_01110101 | 0 1 1 1 0 1 0 1 | ( r (p (q))) | | | | | | | q_93 | q_01011101 | 0 1 0 1 1 1 0 1 | ( r (q (p))) | | | | | | | q_186 | q_10111010 | 1 0 1 1 1 0 1 0 | ((r) (p (q))) | | | | | | | q_174 | q_10101110 | 1 0 1 0 1 1 1 0 | ((r) (q (p))) | | | | | | o---------o------------o-----------------o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 11 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 7. Conjunctive Implications and Their Complements o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_139 | q_10001011 | 1 0 0 0 1 0 1 1 | (p (q))(q (r)) | | | | | | | q_141 | q_10001101 | 1 0 0 0 1 1 0 1 | (p (r))(r (q)) | | | | | | | q_177 | q_10110001 | 1 0 1 1 0 0 0 1 | (q (r))(r (p)) | | | | | | | q_163 | q_10100011 | 1 0 1 0 0 0 1 1 | (q (p))(p (r)) | | | | | | | q_197 | q_11000101 | 1 1 0 0 0 1 0 1 | (r (p))(p (q)) | | | | | | | q_209 | q_11010001 | 1 1 0 1 0 0 0 1 | (r (q))(q (p)) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_116 | q_01110100 | 0 1 1 1 0 1 0 0 | ((p (q))(q (r))) | | | | | | | q_114 | q_01110010 | 0 1 1 1 0 0 1 0 | ((p (r))(r (q))) | | | | | | | q_78 | q_01001110 | 0 1 0 0 1 1 1 0 | ((q (r))(r (p))) | | | | | | | q_92 | q_01011100 | 0 1 0 1 1 1 0 0 | ((q (p))(p (r))) | | | | | | | q_58 | q_00111010 | 0 0 1 1 1 0 1 0 | ((r (p))(p (q))) | | | | | | | q_46 | q_00101110 | 0 0 1 0 1 1 1 0 | ((r (q))(q (p))) | | | | | | o---------o------------o-----------------o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 12 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o In the language of cacti, unlike Peirce's alpha graphs, it is possible to represent the logical functions that correspond to the difference in truth value and the equality in truth value of two logical variables in forms that mention each variable only once. o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p , q)` ` ` | ` ` ` ` | ` ` ((p , q)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_60` ` ` ` | ` ` ` ` | ` ` ` q_195 ` ` ` | o-------------------o ` ` ` ` o-------------------o We have already noted the initial variations on the themes of difference and equality among the forms in Table 2 that gave the linear propositions and their logical complements. Table 8 enumerates a few more variations along these lines. Table 8. More Variations on Difference and Equality o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_96 | q_01100000 | 0 1 1 0 0 0 0 0 | p (q , r) | | | | | | | q_72 | q_01001000 | 0 1 0 0 1 0 0 0 | q (p , r) | | | | | | | q_40 | q_00101000 | 0 0 1 0 1 0 0 0 | r (p , q) | | | | | | | q_144 | q_10010000 | 1 0 0 1 0 0 0 0 | p ((q , r)) | | | | | | | q_132 | q_10000100 | 1 0 0 0 0 1 0 0 | q ((p , r)) | | | | | | | q_130 | q_10000010 | 1 0 0 0 0 0 1 0 | r ((p , q)) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_6 | q_00000110 | 0 0 0 0 0 1 1 0 | (p) (q , r) | | | | | | | q_18 | q_00010010 | 0 0 0 1 0 0 1 0 | (q) (p , r) | | | | | | | q_20 | q_00010100 | 0 0 0 1 0 1 0 0 | (r) (p , q) | | | | | | | q_9 | q_00001001 | 0 0 0 0 1 0 0 1 | (p) ((q , r)) | | | | | | | q_33 | q_00100001 | 0 0 1 0 0 0 0 1 | (q) ((p , r)) | | | | | | | q_65 | q_01000001 | 0 1 0 0 0 0 0 1 | (r) ((p , q)) | | | | | | o=========o============o=================o===================o | | | | | | q_159 | q_10011111 | 1 0 0 1 1 1 1 1 | (p (q , r)) | | | | | | | q_183 | q_10110111 | 1 0 1 1 0 1 1 1 | (q (p , r)) | | | | | | | q_215 | q_11010111 | 1 1 0 1 0 1 1 1 | (r (p , q)) | | | | | | | q_111 | q_01101111 | 0 1 1 0 1 1 1 1 | (p ((q , r))) | | | | | | | q_123 | q_01111011 | 0 1 1 1 1 0 1 1 | (q ((p , r))) | | | | | | | q_125 | q_01111101 | 0 1 1 1 1 1 0 1 | (r ((p , q))) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_249 | q_11111001 | 1 1 1 1 1 0 0 1 | ((p) (q , r)) | | | | | | | q_237 | q_11101101 | 1 1 1 0 1 1 0 1 | ((q) (p , r)) | | | | | | | q_235 | q_11101011 | 1 1 1 0 1 0 1 1 | ((r) (p , q)) | | | | | | | q_246 | q_11110110 | 1 1 1 1 0 1 1 0 | ((p) ((q , r))) | | | | | | | q_222 | q_11011110 | 1 1 0 1 1 1 1 0 | ((q) ((p , r))) | | | | | | | q_190 | q_10111110 | 1 0 1 1 1 1 1 0 | ((r) ((p , q))) | | | | | | o---------o------------o-----------------o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 13 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 9. Conjunctive Differences and Equalities o---------o------------o-----------------o--------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o--------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o--------------------o | | | | | | q_24 | q_00011000 | 0 0 0 1 1 0 0 0 | (p, q) (p, r) | | | | | | | q_36 | q_00100100 | 0 0 1 0 0 1 0 0 | (p, q) (q, r) | | | | | | | q_66 | q_01000010 | 0 1 0 0 0 0 1 0 | (p, r) (q, r) | | | | | | | q_129 | q_10000001 | 1 0 0 0 0 0 0 1 | ((p, q))((q, r)) | | | | | | o---------o------------o-----------------o--------------------o | | | | | | q_231 | q_11100111 | 1 1 1 0 0 1 1 1 | ( (p, q) (p, r) ) | | | | | | | q_219 | q_11011011 | 1 1 0 1 1 0 1 1 | ( (p, q) (q, r) ) | | | | | | | q_189 | q_10111101 | 1 0 1 1 1 1 0 1 | ( (p, r) (q, r) ) | | | | | | | q_126 | q_01111110 | 0 1 1 1 1 1 1 0 | (((p, q))((q, r))) | | | | | | o---------o------------o-----------------o--------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 14 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o I will explain my concept of "thematization" or "thematic extension" after I copy out the series of Tables that is formed on its basis. In the meantime, here is a general exposition: | Jon Awbrey, "Differential Logic and Dynamic Systems" | DLOG D28. http://suo.ieee.org/ontology/msg04826.html | DLOG D29. http://suo.ieee.org/ontology/msg04827.html | DLOG D30. http://suo.ieee.org/ontology/msg04828.html | DLOG D31. http://suo.ieee.org/ontology/msg04829.html | DLOG D32. http://suo.ieee.org/ontology/msg04830.html | DLOG D33. http://suo.ieee.org/ontology/msg04832.html In order to make the pattern of their construction more evident, I have left the expressions of the thematic extensions in their unreduced forms. Table 10. Thematic Extensions: [q, r] -> [p, q, r] o---------o------------o-----------------o---------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------o | | | | | | q_15 | q_00001111 | 0 0 0 0 1 1 1 1 | ((p , ( ) )) | | | | | | | q_30 | q_00011110 | 0 0 0 1 1 1 1 0 | ((p , (q) (r) )) | | | | | | | q_45 | q_00101101 | 0 0 1 0 1 1 0 1 | ((p , (q) r )) | | | | | | | q_60 | q_00111100 | 0 0 1 1 1 1 0 0 | ((p , (q) )) | | | | | | | q_75 | q_01001011 | 0 1 0 0 1 0 1 1 | ((p , q (r) )) | | | | | | | q_90 | q_01011010 | 0 1 0 1 1 0 1 0 | ((p , (r) )) | | | | | | | q_105 | q_01101001 | 0 1 1 0 1 0 0 1 | ((p , (q , r) )) | | | | | | | q_120 | q_01111000 | 0 1 1 1 1 0 0 0 | ((p , (q r) )) | | | | | | | q_135 | q_10000111 | 1 0 0 0 0 1 1 1 | ((p , q r )) | | | | | | | q_150 | q_10010110 | 1 0 0 1 0 1 1 0 | ((p , ((q , r)) )) | | | | | | | q_165 | q_10100101 | 1 0 1 0 0 1 0 1 | ((p , r )) | | | | | | | q_180 | q_10110100 | 1 0 1 1 0 1 0 0 | ((p , (q (r)) )) | | | | | | | q_195 | q_11000011 | 1 1 0 0 0 0 1 1 | ((p , q )) | | | | | | | q_210 | q_11010010 | 1 1 0 1 0 0 1 0 | ((p , ((q) r) )) | | | | | | | q_225 | q_11100001 | 1 1 1 0 0 0 0 1 | ((p , ((q) (r)) )) | | | | | | | q_240 | q_11110000 | 1 1 1 1 0 0 0 0 | ((p , )) | | | | | | o---------o------------o-----------------o---------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 15 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 11. Thematic Extensions: [p, r] -> [p, q, r] o---------o------------o-----------------o---------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------o | | | | | | q_51 | q_00110011 | 0 0 1 1 0 0 1 1 | ((q , ( ) )) | | | | | | | q_54 | q_00110110 | 0 0 1 1 0 1 1 0 | ((q , (p) (r) )) | | | | | | | q_57 | q_00111001 | 0 0 1 1 1 0 0 1 | ((q , (p) r )) | | | | | | | q_60 | q_00111100 | 0 0 1 1 1 1 0 0 | ((q , (p) )) | | | | | | | q_99 | q_01100011 | 0 1 1 0 0 0 1 1 | ((q , p (r) )) | | | | | | | q_102 | q_01100110 | 0 1 1 0 0 1 1 0 | ((q , (r) )) | | | | | | | q_105 | q_01101001 | 0 1 1 0 1 0 0 1 | ((q , (p , r) )) | | | | | | | q_108 | q_01101100 | 0 1 1 0 1 1 0 0 | ((q , (p r) )) | | | | | | | q_147 | q_10010011 | 1 0 0 1 0 0 1 1 | ((q , p r )) | | | | | | | q_150 | q_10010110 | 1 0 0 1 0 1 1 0 | ((q , ((p , r)) )) | | | | | | | q_153 | q_10011001 | 1 0 0 1 1 0 0 1 | ((q , r )) | | | | | | | q_156 | q_10011100 | 1 0 0 1 1 1 0 0 | ((q , (p (r)) )) | | | | | | | q_195 | q_11000011 | 1 1 0 0 0 0 1 1 | ((q , p )) | | | | | | | q_198 | q_11000110 | 1 1 0 0 0 1 1 0 | ((q , ((p) r) )) | | | | | | | q_201 | q_11001001 | 1 1 0 0 1 0 0 1 | ((q , ((p) (r)) )) | | | | | | | q_204 | q_11001100 | 1 1 0 0 1 1 0 0 | ((q , )) | | | | | | o---------o------------o-----------------o---------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 16 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 12. Thematic Extensions: [p, q] -> [p, q, r] o---------o------------o-----------------o---------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------o | | | | | | q_85 | q_01010101 | 0 1 0 1 0 1 0 1 | ((r , ( ) )) | | | | | | | q_86 | q_01010110 | 0 1 0 1 0 1 1 0 | ((r , (p) (q) )) | | | | | | | q_89 | q_01011001 | 0 1 0 1 1 0 0 1 | ((r , (p) q )) | | | | | | | q_90 | q_01011010 | 0 1 0 1 1 0 1 0 | ((r , (p) )) | | | | | | | q_101 | q_01100101 | 0 1 1 0 0 1 0 1 | ((r , p (q) )) | | | | | | | q_102 | q_01100110 | 0 1 1 0 0 1 1 0 | ((r , (q) )) | | | | | | | q_105 | q_01101001 | 0 1 1 0 1 0 0 1 | ((r , (p , q) )) | | | | | | | q_106 | q_01101010 | 0 1 1 0 1 0 1 0 | ((r , (p q) )) | | | | | | | q_149 | q_10010101 | 1 0 0 1 0 1 0 1 | ((r , p q )) | | | | | | | q_150 | q_10010110 | 1 0 0 1 0 1 1 0 | ((r , ((p , q)) )) | | | | | | | q_153 | q_10011001 | 1 0 0 1 1 0 0 1 | ((r , q )) | | | | | | | q_154 | q_10011010 | 1 0 0 1 1 0 1 0 | ((r , (p (q)) )) | | | | | | | q_165 | q_10100101 | 1 0 1 0 0 1 0 1 | ((r , p )) | | | | | | | q_166 | q_10100110 | 1 0 1 0 0 1 1 0 | ((r , ((p) q) )) | | | | | | | q_169 | q_10101001 | 1 0 1 0 1 0 0 1 | ((r , ((p) (q)) )) | | | | | | | q_170 | q_10101010 | 1 0 1 0 1 0 1 0 | ((r , )) | | | | | | o---------o------------o-----------------o---------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 17 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 13. Differences & Equalities Conjoined with Implications o---------o------------o-----------------o---------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------o | | | | | | q_44 | q_00101100 | 0 0 1 0 1 1 0 0 | (p, q) (p (r)) | | | | | | | q_52 | q_00110100 | 0 0 1 1 0 1 0 0 | (p, q) ((p) r) | | | | | | | q_56 | q_00111000 | 0 0 1 1 1 0 0 0 | (p, q) (q (r)) | | | | | | | q_28 | q_00011100 | 0 0 0 1 1 1 0 0 | (p, q) ((q) r) | | | | | | | q_131 | q_10000011 | 1 0 0 0 0 0 1 1 | ((p, q)) (p (r)) | | | | | | | q_193 | q_11000001 | 1 1 0 0 0 0 0 1 | ((p, q)) ((p) r) | | | | | | | | | | | | q_74 | q_01001010 | 0 1 0 0 1 0 1 0 | (p, r) (p (q)) | | | | | | | q_82 | q_01010010 | 0 1 0 1 0 0 1 0 | (p, r) ((p) q) | | | | | | | q_26 | q_00011010 | 0 0 0 1 1 0 1 0 | (p, r) (q (r)) | | | | | | | q_88 | q_01011000 | 0 1 0 1 1 0 0 0 | (p, r) ((q) r) | | | | | | | q_133 | q_10000101 | 1 0 0 0 0 1 0 1 | ((p, r)) (p (q)) | | | | | | | q_161 | q_10100001 | 1 0 1 0 0 0 0 1 | ((p, r)) ((p) q) | | | | | | | | | | | | q_70 | q_01000110 | 0 1 0 0 0 1 1 0 | (q, r) (p (q)) | | | | | | | q_98 | q_01100010 | 0 1 1 0 0 0 1 0 | (q, r) ((p) q) | | | | | | | q_38 | q_00100110 | 0 0 1 0 0 1 1 0 | (q, r) (p (r)) | | | | | | | q_100 | q_01100100 | 0 1 1 0 0 1 0 0 | (q, r) ((p) r) | | | | | | | q_137 | q_10001001 | 1 0 0 0 1 0 0 1 | ((q, r)) (p (q)) | | | | | | | q_145 | q_10010001 | 1 0 0 1 0 0 0 1 | ((q, r)) ((p) q) | | | | | | o---------o------------o-----------------o---------------------o | | | | | | q_211 | q_11010011 | 1 1 0 1 0 0 1 1 | ((p, q) (p (r))) | | | | | | | q_203 | q_11001011 | 1 1 0 0 1 0 1 1 | ((p, q) ((p) r)) | | | | | | | q_199 | q_11000111 | 1 1 0 0 0 1 1 1 | ((p, q) (q (r))) | | | | | | | q_227 | q_11100011 | 1 1 1 0 0 0 1 1 | ((p, q) ((q) r)) | | | | | | | q_124 | q_01111100 | 0 1 1 1 1 1 0 0 | (((p, q)) (p (r))) | | | | | | | q_62 | q_00111110 | 0 0 1 1 1 1 1 0 | (((p, q)) ((p) r)) | | | | | | | | | | | | q_181 | q_10110101 | 1 0 1 1 0 1 0 1 | ((p, r) (p (q))) | | | | | | | q_173 | q_10101101 | 1 0 1 0 1 1 0 1 | ((p, r) ((p) q)) | | | | | | | q_229 | q_11100101 | 1 1 1 0 0 1 0 1 | ((p, r) (q (r))) | | | | | | | q_167 | q_10100111 | 1 0 1 0 0 1 1 1 | ((p, r) ((q) r)) | | | | | | | q_122 | q_01111010 | 0 1 1 1 1 0 1 0 | (((p, r)) (p (q))) | | | | | | | q_94 | q_01011110 | 0 1 0 1 1 1 1 0 | (((p, r)) ((p) q)) | | | | | | | | | | | | q_185 | q_10111001 | 1 0 1 1 1 0 0 1 | ((q, r) (p (q))) | | | | | | | q_157 | q_10011101 | 1 0 0 1 1 1 0 1 | ((q, r) ((p) q)) | | | | | | | q_217 | q_11011001 | 1 1 0 1 1 0 0 1 | ((q, r) (p (r))) | | | | | | | q_155 | q_10011011 | 1 0 0 1 1 0 1 1 | ((q, r) ((p) r)) | | | | | | | q_118 | q_01110110 | 0 1 1 1 0 1 1 0 | (((q, r)) (p (q))) | | | | | | | q_110 | q_01101110 | 0 1 1 0 1 1 1 0 | (((q, r)) ((p) q)) | | | | | | o---------o------------o-----------------o---------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 18 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 14 shows the propositions q_i : B^3 -> B whose "fibers of truth", that is, whose pre-images of 1, have the form of a single point in B^3 together with the three points that make up its immediate neighborhood. Here I use the alternative syntax "x + y" for the exclusive-or (x , y). Table 14. Proximal Propositions o---------o------------o-----------------o---------------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------------o | | | | | | q_23 | q_00010111 | 0 0 0 1 0 1 1 1 | (p)(q)(r) + ((p),(q),(r)) | | | | | | | q_43 | q_00101011 | 0 0 1 0 1 0 1 1 | (p)(q) r + ((p),(q), r ) | | | | | | | q_77 | q_01001101 | 0 1 0 0 1 1 0 1 | (p) q (r) + ((p), q ,(r)) | | | | | | | q_142 | q_10001110 | 1 0 0 0 1 1 1 0 | (p) q r + ((p), q , r ) | | | | | | | q_113 | q_01110001 | 0 1 1 1 0 0 0 1 | p (q)(r) + ( p ,(q),(r)) | | | | | | | q_178 | q_10110010 | 1 0 1 1 0 0 1 0 | p (q) r + ( p ,(q), r ) | | | | | | | q_212 | q_11010100 | 1 1 0 1 0 1 0 0 | p q (r) + ( p , q ,(r)) | | | | | | | q_232 | q_11101000 | 1 1 1 0 1 0 0 0 | p q r + ( p , q , r ) | | | | | | o---------o------------o-----------------o---------------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 19 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 15. Differences and Equalities between Simples and Boundaries o---------o------------o-----------------o---------------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------------o | | | | | | q_152 | q_10011000 | 1 0 0 1 1 0 0 0 | p + ( p , q , r ) | | | | | | | q_164 | q_10100100 | 1 0 1 0 0 1 0 0 | q + ( p , q , r ) | | | | | | | q_194 | q_11000010 | 1 1 0 0 0 0 1 0 | r + ( p , q , r ) | | | | | | | q_230 | q_11100110 | 1 1 1 0 0 1 1 0 | p + ((p), (q), (r)) | | | | | | | q_218 | q_11011010 | 1 1 0 1 1 0 1 0 | q + ((p), (q), (r)) | | | | | | | q_188 | q_10111100 | 1 0 1 1 1 1 0 0 | r + ((p), (q), (r)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_103 | q_01100111 | 0 1 1 0 0 1 1 1 | p = ( p , q , r ) | | | | | | | q_91 | q_01011011 | 0 1 0 1 1 0 1 1 | q = ( p , q , r ) | | | | | | | q_61 | q_00111101 | 0 0 1 1 1 1 0 1 | r = ( p , q , r ) | | | | | | | q_25 | q_00011001 | 0 0 0 1 1 0 0 1 | p = ((p), (q), (r)) | | | | | | | q_37 | q_00100101 | 0 0 1 0 0 1 0 1 | q = ((p), (q), (r)) | | | | | | | q_67 | q_01000011 | 0 1 0 0 0 0 1 1 | r = ((p), (q), (r)) | | | | | | o---------o------------o-----------------o---------------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 20 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 16. Paisley Propositions o---------o------------o-----------------o---------------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------------o | | | | | | q_216 | q_11011000 | 1 1 0 1 1 0 0 0 | (p, q)(p, r) + p q | | | | | | | q_184 | q_10111000 | 1 0 1 1 1 0 0 0 | (p, q)(p, r) + p r | | | | | | | q_228 | q_11100100 | 1 1 1 0 0 1 0 0 | (p, q)(q, r) + p q | | | | | | | q_172 | q_10101100 | 1 0 1 0 1 1 0 0 | (p, q)(q, r) + q r | | | | | | | q_226 | q_11100010 | 1 1 1 0 0 0 1 0 | (p, r)(q, r) + p r | | | | | | | q_202 | q_11001010 | 1 1 0 0 1 0 1 0 | (p, r)(q, r) + q r | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_39 | q_00100111 | 0 0 1 0 0 1 1 1 | (p, q)(p, r) = p q | | | | | | | q_71 | q_01000111 | 0 1 0 0 0 1 1 1 | (p, q)(p, r) = p r | | | | | | | q_27 | q_00011011 | 0 0 0 1 1 0 1 1 | (p, q)(q, r) = p q | | | | | | | q_83 | q_01010011 | 0 1 0 1 0 0 1 1 | (p, q)(q, r) = q r | | | | | | | q_29 | q_00011101 | 0 0 0 1 1 1 0 1 | (p, r)(q, r) = p r | | | | | | | q_53 | q_00110101 | 0 0 1 1 0 1 0 1 | (p, r)(q, r) = q r | | | | | | o---------o------------o-----------------o---------------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 21 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 17 gives another way of writing the "paisley propositions" that makes their symmetry class more manifest. The venn diagram that follows the Table may provide an idea of why I chose to dub them that, at least, until I can think of a Greek or Latin label. Table 17. Paisley Propositions o---------o------------o-----------------o------------------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o------------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o------------------------------o | | | | | | q_216 | q_11011000 | 1 1 0 1 1 0 0 0 | p + pq + pqr + (p, q, r) | | | | | | | q_184 | q_10111000 | 1 0 1 1 1 0 0 0 | p + pr + pqr + (p, q, r) | | | | | | | q_228 | q_11100100 | 1 1 1 0 0 1 0 0 | q + pq + pqr + (p, q, r) | | | | | | | q_172 | q_10101100 | 1 0 1 0 1 1 0 0 | q + qr + pqr + (p, q, r) | | | | | | | q_226 | q_11100010 | 1 1 1 0 0 0 1 0 | r + pr + pqr + (p, q, r) | | | | | | | q_202 | q_11001010 | 1 1 0 0 1 0 1 0 | r + qr + pqr + (p, q, r) | | | | | | o---------o------------o-----------------o------------------------------o | | | | | | q_39 | q_00100111 | 0 0 1 0 0 1 1 1 | 1 + p + pq + pqr + (p, q, r) | | | | | | | q_71 | q_01000111 | 0 1 0 0 0 1 1 1 | 1 + p + pr + pqr + (p, q, r) | | | | | | | q_27 | q_00011011 | 0 0 0 1 1 0 1 1 | 1 + q + pq + pqr + (p, q, r) | | | | | | | q_83 | q_01010011 | 0 1 0 1 0 0 1 1 | 1 + q + qr + pqr + (p, q, r) | | | | | | | q_29 | q_00011101 | 0 0 0 1 1 1 0 1 | 1 + r + pr + pqr + (p, q, r) | | | | | | | q_53 | q_00110101 | 0 0 1 1 0 1 0 1 | 1 + r + qr + pqr + (p, q, r) | | | | | | o---------o------------o-----------------o------------------------------o o-------------------------------------------------o | | | | | o-------------o | | /%%%%%%%%%%%%%%%\ | | /%%%%%%%%%%%%%%%%%\ | | /%%%%%%%%%%%%%%%%%%%\ | | /%%%%%%%%%%%%%%%%%%%%%\ | | o%%%%%%%%%%%%%%%%%%%%%%%o | | |%%%%%%%%%% P %%%%%%%%%%| | | |%%%%%%%%%%%%%%%%%%%%%%%| | | |%%%%%%%%%%%%%%%%%%%%%%%| | | o---o---------o%%%o---------o---o | | / \%%%%%%%%%\%/ / \ | | / \%%%%%%%%%o / \ | | / \%%%%%%%/%\ / \ | | / \%%%%%/%%%\ / \ | | o o---o-----o---o o | | | |%%%%%| | | | | |%%%%%| | | | | Q |%%%%%| R | | | o o%%%%%o o | | \ \%%%/ / | | \ \%/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_216. p + p q + p q r + (p, q, r) o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 22 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o I'm puzzled by the blind-spot that prevented me from seeing this very simple and natural family of propositions, especially since I had already counted a third of their number. At any rate, here they be, and modulo the usual number of corrections I think that these complete the set of 256 propositions on three variables. Table 18. Desultory Junctions and Their Complements o---------o------------o-----------------o---------------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------------o | | | | | | q_224 | q_11100000 | 1 1 1 0 0 0 0 0 | p ((q)(r)) | | | | | | | q_200 | q_11001000 | 1 1 0 0 1 0 0 0 | q ((p)(r)) | | | | | | | q_168 | q_10101000 | 1 0 1 0 1 0 0 0 | r ((p)(q)) | | | | | | | q_14 | q_00001110 | 0 0 0 0 1 1 1 0 | (p) ((q)(r)) | | | | | | | q_50 | q_00110010 | 0 0 1 1 0 0 1 0 | (q) ((p)(r)) | | | | | | | q_84 | q_01010100 | 0 1 0 1 0 1 0 0 | (r) ((p)(q)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_31 | q_00011111 | 0 0 0 1 1 1 1 1 | (p ((q)(r))) | | | | | | | q_55 | q_00110111 | 0 0 1 1 0 1 1 1 | (q ((p)(r))) | | | | | | | q_87 | q_01010111 | 0 1 0 1 0 1 1 1 | (r ((p)(q))) | | | | | | | q_241 | q_11110001 | 1 1 1 1 0 0 0 1 | ((p) ((q)(r))) | | | | | | | q_205 | q_11001101 | 1 1 0 0 1 1 0 1 | ((q) ((p)(r))) | | | | | | | q_171 | q_10101011 | 1 0 1 0 1 0 1 1 | ((r) ((p)(q))) | | | | | | o---------o------------o-----------------o---------------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 23 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o For ease of viewing, I am placing copies of the Cactus Rules Table at a couple of other sites: Table 256. http://stderr.org/pipermail/inquiry/2004-April/001314.html Table 256. http://suo.ieee.org/ontology/msg05512.html o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 24a o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Here is a set of representative cactus graphs for the 256 propositions on three variables. To make some cactus graphs easier to draw in Ascii, I will occasionally be forced to "stretch a point", drawing the root node "@" as @=@, @=@=@, and so on, and the regular nodes "o" as o=o, o=o=o, and so on. (I will keep adding to this after Easter, but right now I've got spikes in my eyes.) o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `( )` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_0` ` ` ` | ` ` ` ` | ` ` ` q_255 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o o o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o o o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p)(q)(r) ` ` | ` ` ` ` | ` `((p)(q)(r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_1` ` ` ` | ` ` ` ` | ` ` ` q_254 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o r ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ r ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p)(q) r` ` ` | ` ` ` ` | ` `((p)(q) r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_2` ` ` ` | ` ` ` ` | ` ` ` q_253 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p) (q)` ` ` | ` ` ` ` | ` ` ((p) (q)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_3` ` ` ` | ` ` ` ` | ` ` ` q_252 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o q ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ q ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p) q (r) ` ` | ` ` ` ` | ` `((p) q (r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_4` ` ` ` | ` ` ` ` | ` ` ` q_251 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p) (r)` ` ` | ` ` ` ` | ` ` ((p) (r)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_5` ` ` ` | ` ` ` ` | ` ` ` q_250 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o o-o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p)(q, r) ` ` | ` ` ` ` | ` `((p)(q, r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_6` ` ` ` | ` ` ` ` | ` ` ` q_249 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p `q r` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p `q r` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p) (q r) ` ` | ` ` ` ` | ` `((p) (q r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_7` ` ` ` | ` ` ` ` | ` ` ` q_248 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` p ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` p ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` o q r ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ q r ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p) q r` ` ` | ` ` ` ` | ` ` ((p) q r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_8` ` ` ` | ` ` ` ` | ` ` ` q_247 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q ` r ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o---o ` ` | | ` ` ` ` q ` r ` ` | ` ` ` ` | ` ` ` p `\`/` ` ` | | ` ` ` ` o---o ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p `\`/` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p)((q, r))` ` | ` ` ` ` | ` ((p)((q, r))) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_9` ` ` ` | ` ` ` ` | ` ` ` q_246 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` p ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` p ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` o r ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ r ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` (p) r ` ` ` | ` ` ` ` | ` ` `((p) r)` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_10 ` ` ` | ` ` ` ` | ` ` ` q_245 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` p ` | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o ` o q ` ` | | ` ` ` p ` | ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o q ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p) (q (r))` ` | ` ` ` ` | ` ((p) (q (r))) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_11 ` ` ` | ` ` ` ` | ` ` ` q_244 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` p ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` p ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` o q ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ q ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` (p) q ` ` ` | ` ` ` ` | ` ` `((p) q)` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_12 ` ` ` | ` ` ` ` | ` ` ` q_243 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` q ` ` ` | ` ` ` ` | ` ` ` p ` | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o ` o r ` ` | | ` ` ` p ` | ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o r ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p) ((q) r)` ` | ` ` ` ` | ` ((p) ((q) r)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_13 ` ` ` | ` ` ` ` | ` ` ` q_242 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q ` r ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` o ` ` | | ` ` ` ` q ` r ` ` | ` ` ` ` | ` ` ` p `\`/` ` ` | | ` ` ` ` o ` o ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p `\`/` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p)((q)(r))` ` | ` ` ` ` | ` ((p)((q)(r))) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_14 ` ` ` | ` ` ` ` | ` ` ` q_241 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` p ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `(p)` ` ` ` | ` ` ` ` | ` ` ` ` p ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_15 ` ` ` | ` ` ` ` | ` ` ` q_240 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` q ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` q ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` p o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` p @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `p (q)(r) ` ` | ` ` ` ` | ` ` (p (q)(r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_16 ` ` ` | ` ` ` ` | ` ` ` q_239 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` q ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` q ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(q) (r)` ` ` | ` ` ` ` | ` ` ((q) (r)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_17 ` ` ` | ` ` ` ` | ` ` ` q_238 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p r q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o-o o ` ` ` | | ` ` ` p r q ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p, r)(q) ` ` | ` ` ` ` | ` `((p, r)(q))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_18 ` ` ` | ` ` ` ` | ` ` ` q_237 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` `p r` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` `p r` q ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p r) (q) ` ` | ` ` ` ` | ` `((p r) (q))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_19 ` ` ` | ` ` ` ` | ` ` ` q_236 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o-o o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p, q)(r) ` ` | ` ` ` ` | ` `((p, q)(r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_20 ` ` ` | ` ` ` ` | ` ` ` q_235 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` `p q` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` `p q` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p q) (r) ` ` | ` ` ` ` | ` `((p q) (r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_21 ` ` ` | ` ` ` ` | ` ` ` q_234 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o o o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` | | | ` ` ` | | ` ` ` o o o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | | | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p),(q),(r)) ` | ` ` ` ` | `(((p),(q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_22 ` ` ` | ` ` ` ` | ` ` ` q_233 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` `p`q r` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` `o o o` ` | | ` ` ` ` `p`q r` ` | ` ` ` ` | ` `p`q`r`| | |` ` | | ` ` ` ` `o o o` ` | ` ` ` ` | ` `o`o`o o-o-o` ` | | ` `p`q`r`| | |` ` | ` ` ` ` | ` ` \|/ ` \`/ ` ` | | ` `o`o`o o-o-o` ` | ` ` ` ` | ` ` `o-----o` ` ` | | ` ` \|/ ` \`/ ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` ` `o-----o` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | `( (p) (q) (r)` ` | ` ` ` ` | (( (p) (q) (r)` ` | | `,((p),(q),(r)))` | ` ` ` ` | `,((p),(q),(r)))) | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_23 ` ` ` | ` ` ` ` | ` ` ` q_232 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` `p`q`p`r` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` `o-o`o-o` ` ` | | ` ` `p`q`p`r` ` ` | ` ` ` ` | ` ` ` \|`|/ ` ` ` | | ` ` `o-o`o-o` ` ` | ` ` ` ` | ` ` ` `o=o` ` ` ` | | ` ` ` \|`|/ ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` `@=@` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, q) (p, r) ` | ` ` ` ` | `((p, q) (p, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_24 ` ` ` | ` ` ` ` | ` ` ` q_231 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p q r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o o o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | | | ` ` | ` ` ` ` | ` ` ` ` p q r ` ` | | ` ` ` ` o-o-o ` ` | ` ` ` ` | ` ` ` ` o o o ` ` | | ` ` ` p `\`/` ` ` | ` ` ` ` | ` ` ` ` | | | ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o-o-o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((` ` ` p ` ` ` ` | ` ` ` ` | `(` ` ` p ` ` ` ` | | `,((p),(q),(r)))) | ` ` ` ` | `,((p),(q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_25 ` ` ` | ` ` ` ` | ` ` ` q_230 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` p r | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o q ` ` | | ` ` ` p r | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o q ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, r)(q (r)) ` | ` ` ` ` | `((p, r)(q (r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_26 ` ` ` | ` ` ` ` | ` ` ` q_229 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `p q q r` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `o-o o-o` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` `p q` \| |/ ` ` | ` ` ` ` | ` ` ` `p q q r` ` | | ` ` `o---o=o` ` ` | ` ` ` ` | ` ` ` `o-o o-o` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` `p q` \| |/ ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `o---o=o` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((`p` ` ` q ` ` ` | ` ` ` ` | `(`p` ` ` q ` ` ` | | `,(p, q) (q, r))) | ` ` ` ` | `,(p, q) (q, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_27 ` ` ` | ` ` ` ` | ` ` ` q_228 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` q ` ` ` | ` ` ` ` | ` ` ` p q | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o r ` ` | | ` ` ` p q | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o r ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, q)((q) r) ` | ` ` ` ` | `((p, q)((q) r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_28 ` ` ` | ` ` ` ` | ` ` ` q_227 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `p r q r` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `o-o o-o` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` `p r` \| |/ ` ` | ` ` ` ` | ` ` ` `p r q r` ` | | ` ` `o---o=o` ` ` | ` ` ` ` | ` ` ` `o-o o-o` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` `p r` \| |/ ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `o---o=o` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((`p` ` ` r ` ` ` | ` ` ` ` | `(`p` ` ` r ` ` ` | | `,(p, r) (q, r))) | ` ` ` ` | `,(p, r) (q, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_29 ` ` ` | ` ` ` ` | ` ` ` q_226 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` q ` r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p `\`/` ` ` | ` ` ` ` | ` ` ` ` q ` r ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p, (q) (r)))` | ` ` ` ` | ` `(p, (q) (r)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_30 ` ` ` | ` ` ` ` | ` ` ` q_225 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` q ` r ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` p o ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` p @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p ((q)(r))) ` | ` ` ` ` | ` ` p ((q)(r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_31 ` ` ` | ` ` ` ` | ` ` ` q_224 ` ` ` | o-------------------o ` ` ` ` o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 24b o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` q ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` p o r ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` p @ r ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `p (q) r` ` ` | ` ` ` ` | ` ` (p (q) r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_32 ` ` ` | ` ` ` ` | ` ` ` q_223 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` p ` r ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` o---o ` ` ` ` | | ` ` p ` r ` ` ` ` | ` ` ` ` | ` ` `\`/` q ` ` ` | | ` ` o---o ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` `\`/` q ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p, r))(q)` ` | ` ` ` ` | ` (((p, r))(q)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_33 ` ` ` | ` ` ` ` | ` ` ` q_222 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` q ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` o r ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ r ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` (q) r ` ` ` | ` ` ` ` | ` ` `((q) r)` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_34 ` ` ` | ` ` ` ` | ` ` ` q_221 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` r ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` ` ` ` ` | | ` ` ` r ` ` ` ` ` | ` ` ` ` | ` ` ` | ` q ` ` ` | | ` ` ` o ` ` ` ` ` | ` ` ` ` | ` ` p o ` o ` ` ` | | ` ` ` | ` q ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` p o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p (r))(q)` ` | ` ` ` ` | ` `((p (r))(q)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_35 ` ` ` | ` ` ` ` | ` ` ` q_220 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` `p`q`q`r` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` `o-o`o-o` ` ` | | ` ` `p`q`q`r` ` ` | ` ` ` ` | ` ` ` \|`|/ ` ` ` | | ` ` `o-o`o-o` ` ` | ` ` ` ` | ` ` ` `o=o` ` ` ` | | ` ` ` \|`|/ ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` `@=@` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, q) (q, r) ` | ` ` ` ` | `((p, q) (q, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_36 ` ` ` | ` ` ` ` | ` ` ` q_219 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p q r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o o o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | | | ` ` | ` ` ` ` | ` ` ` ` p q r ` ` | | ` ` ` ` o-o-o ` ` | ` ` ` ` | ` ` ` ` o o o ` ` | | ` ` ` q `\`/` ` ` | ` ` ` ` | ` ` ` ` | | | ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o-o-o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` q `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((` ` ` q ` ` ` ` | ` ` ` ` | `(` ` ` q ` ` ` ` | | `,((p),(q),(r)))) | ` ` ` ` | `,((p),(q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_37 ` ` ` | ` ` ` ` | ` ` ` q_218 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` q r | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o p ` ` | | ` ` ` q r | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o p ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (q, r)(p (r)) ` | ` ` ` ` | `((q, r)(p (r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_38 ` ` ` | ` ` ` ` | ` ` ` q_217 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `p q p r` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `o-o o-o` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` `p q` \| |/ ` ` | ` ` ` ` | ` ` ` `p q p r` ` | | ` ` `o---o=o` ` ` | ` ` ` ` | ` ` ` `o-o o-o` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` `p q` \| |/ ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `o---o=o` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((`p` ` ` q ` ` ` | ` ` ` ` | `(`p` ` ` q ` ` ` | | `,(p, q) (p, r))) | ` ` ` ` | `,(p, q) (p, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_39 ` ` ` | ` ` ` ` | ` ` ` q_216 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o r ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ r ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p, q) r` ` ` | ` ` ` ` | ` `((p, q) r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_40 ` ` ` | ` ` ` ` | ` ` ` q_215 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o o ` ` ` ` | | ` ` ` p q ` ` ` ` | ` ` ` ` | ` ` ` | | r ` ` ` | | ` ` ` o o ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | | r ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p),(q), r ) ` | ` ` ` ` | `(((p),(q), r ))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_41` ` ` ` | ` ` ` ` | ` ` ` q_214 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` `p q` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `p q` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` o r ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ r ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p q) r` ` ` | ` ` ` ` | ` ` ((p q) r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_42 ` ` ` | ` ` ` ` | ` ` ` q_213 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` `p`q` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` `o o` ` ` | | ` ` ` ` `p`q` ` ` | ` ` ` ` | ` `p`q` `| |`r` ` | | ` ` ` ` `o o` ` ` | ` ` ` ` | ` `o`o` `o-o-o` ` | | ` `p`q` `| | r` ` | ` ` ` ` | ` ` \|` ` \`/ ` ` | | ` `o`o` `o-o-o` ` | ` ` ` ` | ` `r`o-----o` ` ` | | ` ` \|` ` \`/ ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` `r`o-----o` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | `( (p) (q)` r ` ` | ` ` ` ` | (( (p) (q)` r ` ` | | `,((p),(q), r ))` | ` ` ` ` | `,((p),(q), r ))) | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_43 ` ` ` | ` ` ` ` | ` ` ` q_212 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` p q | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o p ` ` | | ` ` ` p q | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o p ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, q)(p (r)) ` | ` ` ` ` | `((p, q)(p (r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_44 ` ` ` | ` ` ` ` | ` ` ` q_211 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` q ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` | ` ` ` | ` ` ` ` | ` ` ` ` ` q ` ` ` | | ` ` ` o---o r ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o r ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p, (q) r))` ` | ` ` ` ` | ` `(p, (q) r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_45 ` ` ` | ` ` ` ` | ` ` ` q_210 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` | ` | ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` q o ` o r ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` | ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` q o ` o r ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | (((p) q) ((q) r)) | ` ` ` ` | `((p) q) ((q) r)` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_46 ` ` ` | ` ` ` ` | ` ` ` q_209 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` q ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | | ` ` ` ` o r ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` p o ` ` ` ` | ` ` ` ` | ` ` ` ` o r ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` p @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p ((q) r))` ` | ` ` ` ` | ` ` p ((q) r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_47 ` ` ` | ` ` ` ` | ` ` ` q_208 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` q ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` p o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` p @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` p (q) ` ` ` | ` ` ` ` | ` ` `(p (q))` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_48 ` ` ` | ` ` ` ` | ` ` ` q_207 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` ` ` ` ` | | ` ` ` p ` ` ` ` ` | ` ` ` ` | ` ` ` | ` q ` ` ` | | ` ` ` o ` ` ` ` ` | ` ` ` ` | ` ` r o ` o ` ` ` | | ` ` ` | ` q ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` r o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p) r) (q)` ` | ` ` ` ` | ` (((p) r) (q)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_49 ` ` ` | ` ` ` ` | ` ` ` q_206 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` p ` r ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` o ` o ` ` ` ` | | ` ` p ` r ` ` ` ` | ` ` ` ` | ` ` `\`/` q ` ` ` | | ` ` o ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` `\`/` q ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p) (r)) (q) ` | ` ` ` ` | `(((p) (r)) (q))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_50 ` ` ` | ` ` ` ` | ` ` ` q_205 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` q ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `(q)` ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_51 ` ` ` | ` ` ` ` | ` ` ` q_204 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` p ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` p ` ` ` | ` ` ` ` | ` ` ` p q | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o r ` ` | | ` ` ` p q | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o r ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, q)((p) r) ` | ` ` ` ` | `((p, q)((p) r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_52 ` ` ` | ` ` ` ` | ` ` ` q_203 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `p r q r` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `o-o o-o` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` `q r` \| |/ ` ` | ` ` ` ` | ` ` ` `p r q r` ` | | ` ` `o---o=o` ` ` | ` ` ` ` | ` ` ` `o-o o-o` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` `q r` \| |/ ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `o---o=o` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((`q` ` ` r ` ` ` | ` ` ` ` | `(`q` ` ` r ` ` ` | | `,(p, r) (q, r))) | ` ` ` ` | `,(p, r) (q, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_53 ` ` ` | ` ` ` ` | ` ` ` q_202 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p ` r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q `\`/` ` ` | ` ` ` ` | ` ` ` ` p ` r ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` q `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((q, (p)(r))) ` | ` ` ` ` | ` `(q, (p)(r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_54 ` ` ` | ` ` ` ` | ` ` ` q_201 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` o q ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (((p)(r)) q)` ` | ` ` ` ` | ` `((p)(r)) q ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_55 ` ` ` | ` ` ` ` | ` ` ` q_200 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` p q | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o q ` ` | | ` ` ` p q | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o q ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, q)(q (r)) ` | ` ` ` ` | `((p, q)(q (r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_56 ` ` ` | ` ` ` ` | ` ` ` q_199 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` p ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q ` | ` ` ` | ` ` ` ` | ` ` ` ` ` p ` ` ` | | ` ` ` o---o r ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` q ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o r ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((q, (p) r))` ` | ` ` ` ` | ` `(q, (p) r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_57 ` ` ` | ` ` ` ` | ` ` ` q_198 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q ` p ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` | ` | ` ` ` | ` ` ` ` | ` ` ` q ` p ` ` ` | | ` ` p o ` o r ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` | ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` p o ` o r ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((p (q)) ((p) r)) | ` ` ` ` | `(p (q)) ((p) r)` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_58 ` ` ` | ` ` ` ` | ` ` ` q_197 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` p ` ` ` ` | | ` ` ` ` o r ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o q ` ` ` | ` ` ` ` | ` ` ` ` o r ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(((p) r) q)` ` | ` ` ` ` | ` ` ((p) r) q ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_59 ` ` ` | ` ` ` ` | ` ` ` q_196 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p , q)` ` ` | ` ` ` ` | ` ` ((p , q)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_60` ` ` ` | ` ` ` ` | ` ` ` q_195 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p q r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o-o-o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` r `\`/` ` ` | ` ` ` ` | ` ` ` ` p q r ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o-o-o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` r `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((r, (p, q, r ))) | ` ` ` ` | `(r, (p, q, r ))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_61 ` ` ` | ` ` ` ` | ` ` ` q_194 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` p ` q ` p ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` o---o ` o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` `\`/` `/` ` ` | ` ` ` ` | ` ` p ` q ` p ` ` | | ` ` ` o ` o r ` ` | ` ` ` ` | ` ` o---o ` o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `\`/` `/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o r ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | (((p, q))((p) r)) | ` ` ` ` | `((p, q))((p) r)` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_62 ` ` ` | ` ` ` ` | ` ` ` q_193 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `p q` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `p q` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` (p q) ` ` ` | ` ` ` ` | ` ` ` `p q` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_63 ` ` ` | ` ` ` ` | ` ` ` q_192 ` ` ` | o-------------------o ` ` ` ` o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 24c o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` r ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` r ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` p q o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` p q @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` p q (r) ` ` ` | ` ` ` ` | ` `(p q (r))` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_64 ` ` ` | ` ` ` ` | ` ` ` q_191 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` p ` q ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` o---o ` ` ` ` | | ` ` p ` q ` ` ` ` | ` ` ` ` | ` ` `\`/` r ` ` ` | | ` ` o---o ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` `\`/` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p, q))(r)` ` | ` ` ` ` | ` (((p, q))(r)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_65 ` ` ` | ` ` ` ` | ` ` ` q_190 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` `p`r`q`r` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` `o-o`o-o` ` ` | | ` ` `p`r`q`r` ` ` | ` ` ` ` | ` ` ` \|`|/ ` ` ` | | ` ` `o-o`o-o` ` ` | ` ` ` ` | ` ` ` `o=o` ` ` ` | | ` ` ` \|`|/ ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` `@=@` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, r) (q, r) ` | ` ` ` ` | `((p, r) (q, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_66 ` ` ` | ` ` ` ` | ` ` ` q_189 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p q r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o o o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | | | ` ` | ` ` ` ` | ` ` ` ` p q r ` ` | | ` ` ` ` o-o-o ` ` | ` ` ` ` | ` ` ` ` o o o ` ` | | ` ` ` r `\`/` ` ` | ` ` ` ` | ` ` ` ` | | | ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o-o-o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` r `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((` ` ` r ` ` ` ` | ` ` ` ` | `(` ` ` r ` ` ` ` | | `,((p),(q),(r)))) | ` ` ` ` | `,((p),(q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_67 ` ` ` | ` ` ` ` | ` ` ` q_188 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` r ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` r ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` q o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` q @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q (r) ` ` ` | ` ` ` ` | ` ` `(q (r))` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_68 ` ` ` | ` ` ` ` | ` ` ` q_187 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` q ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` ` ` ` ` | | ` ` ` q ` ` ` ` ` | ` ` ` ` | ` ` ` | ` r ` ` ` | | ` ` ` o ` ` ` ` ` | ` ` ` ` | ` ` p o ` o ` ` ` | | ` ` ` | ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` p o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p (q))(r)` ` | ` ` ` ` | ` `((p (q))(r)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_69 ` ` ` | ` ` ` ` | ` ` ` q_186 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` q ` ` ` | ` ` ` ` | ` ` ` q r | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o p ` ` | | ` ` ` q r | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o p ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (q, r)(p (q)) ` | ` ` ` ` | `((q, r)(p (q)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_70 ` ` ` | ` ` ` ` | ` ` ` q_185 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `p q p r` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `o-o o-o` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` `p r` \| |/ ` ` | ` ` ` ` | ` ` ` `p q p r` ` | | ` ` `o---o=o` ` ` | ` ` ` ` | ` ` ` `o-o o-o` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` `p r` \| |/ ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `o---o=o` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((`p` ` ` r ` ` ` | ` ` ` ` | `(`p` ` ` r ` ` ` | | `,(p, q) (p, r))) | ` ` ` ` | `,(p, q) (p, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_71 ` ` ` | ` ` ` ` | ` ` ` q_184 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o q ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ q ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p, r) q` ` ` | ` ` ` ` | ` `((p, r) q) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_72 ` ` ` | ` ` ` ` | ` ` ` q_183 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` | q | ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` | q | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p), q ,(r)) ` | ` ` ` ` | `(((p), q ,(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_73` ` ` ` | ` ` ` ` | ` ` ` q_182 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` q ` ` ` | ` ` ` ` | ` ` ` p r | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o p ` ` | | ` ` ` p r | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o p ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, r)(p (q)) ` | ` ` ` ` | `((p, r)(p (q)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_74 ` ` ` | ` ` ` ` | ` ` ` q_181 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` | ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` o---o q ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o q ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p, q (r))) ` | ` ` ` ` | ` ` (p, q (r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_75 ` ` ` | ` ` ` ` | ` ` ` q_180 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` `p r` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `p r` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` o q ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ q ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p r) q` ` ` | ` ` ` ` | ` ` ((p r) q) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_76 ` ` ` | ` ` ` ` | ` ` ` q_179 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` `p` `r` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` `o` `o` ` | | ` ` ` ` `p` `r` ` | ` ` ` ` | ` `p`r` `| q |` ` | | ` ` ` ` `o` `o` ` | ` ` ` ` | ` `o`o` `o-o-o` ` | | ` `p`r` `| q |` ` | ` ` ` ` | ` ` \|` ` \ / ` ` | | ` `o`o` `o-o-o` ` | ` ` ` ` | ` `q`o-----o` ` ` | | ` ` \|` ` \ / ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` `q`o-----o` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | `( (p)` q `(r)` ` | ` ` ` ` | (( (p)` q `(r)` ` | | `,((p), q ,(r)))` | ` ` ` ` | `,((p), q ,(r)))) | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_77 ` ` ` | ` ` ` ` | ` ` ` q_178 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` | ` | ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` r o ` o q ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` | ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` r o ` o q ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | (((p) r) (q (r))) | ` ` ` ` | `((p) r) (q (r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_78 ` ` ` | ` ` ` ` | ` ` ` q_177 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` r ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` r ` ` ` ` | | ` ` ` q o ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` p o ` ` ` ` | ` ` ` ` | ` ` ` q o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` p @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p (q (r)))` ` | ` ` ` ` | ` ` p (q (r)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_79 ` ` ` | ` ` ` ` | ` ` ` q_176 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` r ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` r ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` p o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` p @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` p (r) ` ` ` | ` ` ` ` | ` ` `(p (r))` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_80 ` ` ` | ` ` ` ` | ` ` ` q_175 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o ` ` ` ` ` | | ` ` ` p ` ` ` ` ` | ` ` ` ` | ` ` ` | ` r ` ` ` | | ` ` ` o ` ` ` ` ` | ` ` ` ` | ` ` q o ` o ` ` ` | | ` ` ` | ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` q o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p) q)(r) ` ` | ` ` ` ` | ` (((p) q)(r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_81 ` ` ` | ` ` ` ` | ` ` ` q_174 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` p ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` p ` ` ` | ` ` ` ` | ` ` ` p r | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o q ` ` | | ` ` ` p r | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o q ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, r)((p) q) ` | ` ` ` ` | `((p, r)((p) q))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_82 ` ` ` | ` ` ` ` | ` ` ` q_173 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `p q q r` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `o-o o-o` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` `q r` \| |/ ` ` | ` ` ` ` | ` ` ` `p q q r` ` | | ` ` `o---o=o` ` ` | ` ` ` ` | ` ` ` `o-o o-o` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` `q r` \| |/ ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `o---o=o` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((`q` ` ` r ` ` ` | ` ` ` ` | `(`q` ` ` r ` ` ` | | `,(p, q) (q, r))) | ` ` ` ` | `,(p, q) (q, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_83 ` ` ` | ` ` ` ` | ` ` ` q_172 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` p ` q ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` o ` o ` ` ` ` | | ` ` p ` q ` ` ` ` | ` ` ` ` | ` ` `\`/` r ` ` ` | | ` ` o ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` `\`/` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p)(q))(r)` ` | ` ` ` ` | ` (((p)(q))(r)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_84 ` ` ` | ` ` ` ` | ` ` ` q_171 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` r ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` r ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `(r)` ` ` ` | ` ` ` ` | ` ` ` ` r ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_85 ` ` ` | ` ` ` ` | ` ` ` q_170 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p ` q ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` r `\`/` ` ` | ` ` ` ` | ` ` ` ` p ` q ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` r `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((r, (p)(q))) ` | ` ` ` ` | ` `(r, (p)(q))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_86 ` ` ` | ` ` ` ` | ` ` ` q_169 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` o r ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (((p)(q)) r)` ` | ` ` ` ` | ` `((p)(q)) r ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_87 ` ` ` | ` ` ` ` | ` ` ` q_168 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` q ` ` ` | ` ` ` ` | ` ` ` p r | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o r ` ` | | ` ` ` p r | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o r ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (p, r)((q) r) ` | ` ` ` ` | `((p, r)((q) r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_88 ` ` ` | ` ` ` ` | ` ` ` q_167 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` p ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` r ` | ` ` ` | ` ` ` ` | ` ` ` ` ` p ` ` ` | | ` ` ` o---o q ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` r ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o q ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((r, (p) q))` ` | ` ` ` ` | ` `(r, (p) q) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_89 ` ` ` | ` ` ` ` | ` ` ` q_166 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p , r)` ` ` | ` ` ` ` | ` ` ((p , r)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_90 ` ` ` | ` ` ` ` | ` ` ` q_165 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p q r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o-o-o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q `\`/` ` ` | ` ` ` ` | ` ` ` ` p q r ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o-o-o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` q `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((q, (p, q, r)))` | ` ` ` ` | `(q, (p, q, r)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_91 ` ` ` | ` ` ` ` | ` ` ` q_164 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` r ` p ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` | ` | ` ` ` | ` ` ` ` | ` ` ` r ` p ` ` ` | | ` ` p o ` o q ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` | ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` p o ` o q ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((p (r)) ((p) q)) | ` ` ` ` | `(p (r)) ((p) q)` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_92 ` ` ` | ` ` ` ` | ` ` ` q_163 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` p ` ` ` ` | | ` ` ` ` o q ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o r ` ` ` | ` ` ` ` | ` ` ` ` o q ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(((p) q) r)` ` | ` ` ` ` | ` ` ((p) q) r ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_93 ` ` ` | ` ` ` ` | ` ` ` q_162 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` p ` r ` p ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` o---o ` o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` `\`/` `/` ` ` | ` ` ` ` | ` ` p ` r ` p ` ` | | ` ` ` o ` o q ` ` | ` ` ` ` | ` ` o---o ` o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `\`/` `/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o q ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | (((p, r))((p) q)) | ` ` ` ` | `((p, r))((p) q)` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_94 ` ` ` | ` ` ` ` | ` ` ` q_161 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `p r` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `p r` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` (p r) ` ` ` | ` ` ` ` | ` ` ` `p r` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_95 ` ` ` | ` ` ` ` | ` ` ` q_160 ` ` ` | o-------------------o ` ` ` ` o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 24d o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` q ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` q ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` p o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` p @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `p (q, r) ` ` | ` ` ` ` | ` ` (p (q, r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_96 ` ` ` | ` ` ` ` | ` ` ` q_159 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o o ` ` ` | | ` ` ` ` q r ` ` ` | ` ` ` ` | ` ` ` p | | ` ` ` | | ` ` ` ` o o ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` p | | ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p, (q),(r)) ` | ` ` ` ` | ` ((p, (q),(r)))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_97 ` ` ` | ` ` ` ` | ` ` ` q_158 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` p ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` p ` ` ` | ` ` ` ` | ` ` ` q r | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o q ` ` | | ` ` ` q r | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o q ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (q, r)((p) q) ` | ` ` ` ` | `((q, r)((p) q))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_98 ` ` ` | ` ` ` ` | ` ` ` q_157 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q ` | ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` o---o p ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` q ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o p ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((q, p (r))) ` | ` ` ` ` | ` ` (q, p (r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` `q_99 ` ` ` | ` ` ` ` | ` ` ` q_156 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` p ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` ` ` p ` ` ` | ` ` ` ` | ` ` ` q r | ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` o-o o r ` ` | | ` ` ` q r | ` ` ` | ` ` ` ` | ` ` ` `\|/` ` ` ` | | ` ` ` o-o o r ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\|/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (q, r)((p) r) ` | ` ` ` ` | `((q, r)((p) r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_100 ` ` ` | ` ` ` ` | ` ` ` q_155 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` q ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` r ` | ` ` ` | ` ` ` ` | ` ` ` ` ` q ` ` ` | | ` ` ` o---o p ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` r ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o p ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((r, p (q))) ` | ` ` ` ` | ` ` (r, p (q))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_101 ` ` ` | ` ` ` ` | ` ` ` q_154 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` q ` r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` q ` r ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(q , r)` ` ` | ` ` ` ` | ` ` ((q , r)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_102 ` ` ` | ` ` ` ` | ` ` ` q_153 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` p q r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o-o-o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p `\`/` ` ` | ` ` ` ` | ` ` ` ` p q r ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o-o-o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((p, (p, q, r)))` | ` ` ` ` | `(p, (p, q, r)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_103 ` ` ` | ` ` ` ` | ` ` ` q_152 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` (p, q, r) ` ` | ` ` ` ` | ` `((p, q, r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_104 ` ` ` | ` ` ` ` | ` ` ` q_151 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` q ` r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o---o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p `\ /` ` ` | ` ` ` ` | ` ` ` ` q ` r ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` o---o ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` p `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p, (q, r))) ` | ` ` ` ` | ` `(p, (q, r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_105 ` ` ` | ` ` ` ` | ` ` ` q_150 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` `p q` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` r ` | ` ` ` | ` ` ` ` | ` ` ` ` `p q` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` r ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((r, (p q)))` ` | ` ` ` ` | ` `(r, (p q)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_106 ` ` ` | ` ` ` ` | ` ` ` q_149 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p q | ` ` ` | ` ` ` ` | ` ` ` ` ` r ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` p q | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p, q, (r)))` | ` ` ` ` | ` ` (p, q, (r)) ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_107 ` ` ` | ` ` ` ` | ` ` ` q_148 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` `p r` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q ` | ` ` ` | ` ` ` ` | ` ` ` ` `p r` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` q ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((q, (p r)))` ` | ` ` ` ` | ` `(q, (p r)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_108 ` ` ` | ` ` ` ` | ` ` ` q_147 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` q ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p | r ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` p | r ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\ /` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p, (q), r)) ` | ` ` ` ` | ` `(p, (q), r)` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_109 ` ` ` | ` ` ` ` | ` ` ` q_146 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` p ` q ` r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` o ` o---o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` `\` `\`/` ` ` | ` ` ` ` | ` ` p ` q ` r ` ` | | ` ` q o ` o ` ` ` | ` ` ` ` | ` ` o ` o---o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `\` `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` q o ` o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | (((p) q)((q, r))) | ` ` ` ` | `((p) q)((q, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_110 ` ` ` | ` ` ` ` | ` ` ` q_145 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` q ` r ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` p o ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` p @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `(p ((q, r))) ` | ` ` ` ` | ` ` p ((q, r))` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_111 ` ` ` | ` ` ` ` | ` ` ` q_144 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` `q r` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `q r` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` p o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` p @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `p (q r)` ` ` | ` ` ` ` | ` ` (p (q r)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_112 ` ` ` | ` ` ` ` | ` ` ` q_143 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` `q`r` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` `o`o` ` | | ` ` ` ` ` `q`r` ` | ` ` ` ` | ` `q`r` `p | |` ` | | ` ` ` ` ` `o`o` ` | ` ` ` ` | ` `o`o` `o-o-o` ` | | ` `q`r` `p | |` ` | ` ` ` ` | ` ` \|` ` \ / ` ` | | ` `o`o` `o-o-o` ` | ` ` ` ` | ` `p`o-----o` ` ` | | ` ` \|` ` \ / ` ` | ` ` ` ` | ` ` ` \ ` / ` ` ` | | ` `p`o-----o` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` \ ` / ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | `(` p `(q)`(r)` ` | ` ` ` ` | ((` p `(q)`(r)` ` | | `,( p ,(q),(r)))` | ` ` ` ` | `,( p ,(q),(r)))) | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_113 ` ` ` | ` ` ` ` | ` ` ` q_142 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` r ` q ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` | ` | ` ` ` | ` ` ` ` | ` ` ` r ` q ` ` ` | | ` ` p o ` o r ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` | ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` p o ` o r ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((p (r)) (r (q))) | ` ` ` ` | `(p (r)) (r (q))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_114 ` ` ` | ` ` ` ` | ` ` ` q_141 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` r ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` r ` ` ` ` | | ` ` ` p o ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` q o ` ` ` ` | ` ` ` ` | ` ` ` p o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` q @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p (r)) q)` ` | ` ` ` ` | ` ` (p (r)) q ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_115 ` ` ` | ` ` ` ` | ` ` ` q_140 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` q ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` | ` | ` ` ` | ` ` ` ` | ` ` ` q ` r ` ` ` | | ` ` p o ` o q ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` | ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` p o ` o q ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((p (q)) (q (r))) | ` ` ` ` | `(p (q)) (q (r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_116 ` ` ` | ` ` ` ` | ` ` ` q_139 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` q ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` q ` ` ` ` | | ` ` ` p o ` ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` r o ` ` ` ` | ` ` ` ` | ` ` ` p o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` r @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` `((p (q)) r)` ` | ` ` ` ` | ` ` (p (q)) r ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_117 ` ` ` | ` ` ` ` | ` ` ` q_138 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` q ` q ` r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` o ` o---o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` `\` `\`/` ` ` | ` ` ` ` | ` ` q ` q ` r ` ` | | ` ` p o ` o ` ` ` | ` ` ` ` | ` ` o ` o---o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `\` `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` p o ` o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((p (q))((q, r))) | ` ` ` ` | `(p (q))((q, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_118 ` ` ` | ` ` ` ` | ` ` ` q_137 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `q r` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `q r` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` (q r) ` ` ` | ` ` ` ` | ` ` ` `q r` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_119 ` ` ` | ` ` ` ` | ` ` ` q_136 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` `q r` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` | ` ` ` | ` ` ` ` | ` ` ` ` `q r` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` ` o ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p ` | ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ((p, (q r)))` ` | ` ` ` ` | ` `(p, (q r)) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_120 ` ` ` | ` ` ` ` | ` ` ` q_135 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` | q r ` ` ` | ` ` ` ` | ` ` ` p ` ` ` ` ` | | ` ` ` o-o-o ` ` ` | ` ` ` ` | ` ` ` o ` ` ` ` ` | | ` ` ` `\ /` ` ` ` | ` ` ` ` | ` ` ` | q r ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o-o-o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | `(((p), q, r))` ` | ` ` ` ` | ` ((p), q, r) ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_121 ` ` ` | ` ` ` ` | ` ` ` q_134 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` q ` p ` r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` o ` o---o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` `\` `\`/` ` ` | ` ` ` ` | ` ` q ` p ` r ` ` | | ` ` p o ` o ` ` ` | ` ` ` ` | ` ` o ` o---o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `\` `\`/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` p o ` o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ((p (q))((p, r))) | ` ` ` ` | `(p (q))((p, r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_122 ` ` ` | ` ` ` ` | ` ` ` q_133 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p ` r ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` o q ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ q ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (((p, r)) q)` ` | ` ` ` ` | ` `((p, r)) q ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_123 ` ` ` | ` ` ` ` | ` ` ` q_132 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` p ` q ` r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` o---o ` o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` `\`/` `/` ` ` | ` ` ` ` | ` ` p ` q ` r ` ` | | ` ` ` o ` o p ` ` | ` ` ` ` | ` ` o---o ` o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `\`/` `/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o p ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | (((p, q))(p (r))) | ` ` ` ` | `((p, q))(p (r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_124 ` ` ` | ` ` ` ` | ` ` ` q_131 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` q ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` o---o ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` ` p ` q ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o---o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` o r ` ` ` | ` ` ` ` | ` ` ` ` o ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ r ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` (((p, q)) r)` ` | ` ` ` ` | ` `((p, q)) r ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_125 ` ` ` | ` ` ` ` | ` ` ` q_130 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` p q ` q r ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` o-o ` o-o ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` `\| ` |/` ` ` | ` ` ` ` | ` ` p q ` q r ` ` | | ` ` ` o ` o ` ` ` | ` ` ` ` | ` ` o-o ` o-o ` ` | | ` ` ` `\`/` ` ` ` | ` ` ` ` | ` ` `\| ` |/` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` o ` o ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` `\`/` ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | (((p,q)) ((q,r))) | ` ` ` ` | `((p,q)) ((q,r))` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_126 ` ` ` | ` ` ` ` | ` ` ` q_129 ` ` ` | o-------------------o ` ` ` ` o-------------------o o-------------------o ` ` ` ` o-------------------o | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` p q r ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` o ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | | ` ` ` ` @ ` ` ` ` | ` ` ` ` | ` ` ` ` @ ` ` ` ` | | ` ` ` ` ` ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` `(p q r)` ` ` | ` ` ` ` | ` ` ` p q r ` ` ` | o-------------------o ` ` ` ` o-------------------o | ` ` ` q_127 ` ` ` | ` ` ` ` | ` ` ` q_128 ` ` ` | o-------------------o ` ` ` ` o-------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 24e o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o I'm attaching here a text file copy of the current set of cactus graphs for propositions on three variables, and I have placed additional copies at the following two sites: CR 24. http://stderr.org/pipermail/inquiry/2004-April/001322.html CR 24. http://suo.ieee.org/ontology/msg05518.html o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Note 25 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules -- Jon Awbrey o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 256. Propositional Forms on Three Variables o---------o------------o-----------------o---------------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------------o | | | | | | q_0 | q_00000000 | 0 0 0 0 0 0 0 0 | ( ) | | | | | | | q_1 | q_00000001 | 0 0 0 0 0 0 0 1 | (p) (q) (r) | | | | | | | q_2 | q_00000010 | 0 0 0 0 0 0 1 0 | (p) (q) r | | | | | | | q_3 | q_00000011 | 0 0 0 0 0 0 1 1 | (p) (q) | | | | | | | q_4 | q_00000100 | 0 0 0 0 0 1 0 0 | (p) q (r) | | | | | | | q_5 | q_00000101 | 0 0 0 0 0 1 0 1 | (p) (r) | | | | | | | q_6 | q_00000110 | 0 0 0 0 0 1 1 0 | (p) (q , r) | | | | | | | q_7 | q_00000111 | 0 0 0 0 0 1 1 1 | (p) (q r) | | | | | | | q_8 | q_00001000 | 0 0 0 0 1 0 0 0 | (p) q r | | | | | | | q_9 | q_00001001 | 0 0 0 0 1 0 0 1 | (p) ((q , r)) | | | | | | | q_10 | q_00001010 | 0 0 0 0 1 0 1 0 | (p) r | | | | | | | q_11 | q_00001011 | 0 0 0 0 1 0 1 1 | (p) (q (r)) | | | | | | | q_12 | q_00001100 | 0 0 0 0 1 1 0 0 | (p) q | | | | | | | q_13 | q_00001101 | 0 0 0 0 1 1 0 1 | (p) ((q) r) | | | | | | | q_14 | q_00001110 | 0 0 0 0 1 1 1 0 | (p) ((q) (r)) | | | | | | | q_15 | q_00001111 | 0 0 0 0 1 1 1 1 | (p) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_16 | q_00010000 | 0 0 0 1 0 0 0 0 | p (q) (r) | | | | | | | q_17 | q_00010001 | 0 0 0 1 0 0 0 1 | (q) (r) | | | | | | | q_18 | q_00010010 | 0 0 0 1 0 0 1 0 | (p , r) (q) | | | | | | | q_19 | q_00010011 | 0 0 0 1 0 0 1 1 | (p r) (q) | | | | | | | q_20 | q_00010100 | 0 0 0 1 0 1 0 0 | (p , q) (r) | | | | | | | q_21 | q_00010101 | 0 0 0 1 0 1 0 1 | (p q) (r) | | | | | | | q_22 | q_00010110 | 0 0 0 1 0 1 1 0 | ((p), (q), (r)) | | | | | | | q_23 | q_00010111 | 0 0 0 1 0 1 1 1 | (p)(q)(r) + ((p),(q),(r)) | | | | | | | q_24 | q_00011000 | 0 0 0 1 1 0 0 0 | (p, q) (p, r) | | | | | | | q_25 | q_00011001 | 0 0 0 1 1 0 0 1 | p = ((p), (q), (r)) | | | | | | | q_26 | q_00011010 | 0 0 0 1 1 0 1 0 | (p, r) (q (r)) | | | | | | | q_27 | q_00011011 | 0 0 0 1 1 0 1 1 | (p, q)(q, r) = p q | | | | | | | q_28 | q_00011100 | 0 0 0 1 1 1 0 0 | (p, q)((q) r) | | | | | | | q_29 | q_00011101 | 0 0 0 1 1 1 0 1 | (p, r)(q, r) = p r | | | | | | | q_30 | q_00011110 | 0 0 0 1 1 1 1 0 | ((p , (q) (r))) | | | | | | | q_31 | q_00011111 | 0 0 0 1 1 1 1 1 | (p ((q) (r))) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_32 | q_00100000 | 0 0 1 0 0 0 0 0 | p (q) r | | | | | | | q_33 | q_00100001 | 0 0 1 0 0 0 0 1 | ((p , r)) (q) | | | | | | | q_34 | q_00100010 | 0 0 1 0 0 0 1 0 | (q) r | | | | | | | q_35 | q_00100011 | 0 0 1 0 0 0 1 1 | (p (r)) (q) | | | | | | | q_36 | q_00100100 | 0 0 1 0 0 1 0 0 | (p, q) (q, r) | | | | | | | q_37 | q_00100101 | 0 0 1 0 0 1 0 1 | q = ((p), (q), (r)) | | | | | | | q_38 | q_00100110 | 0 0 1 0 0 1 1 0 | (q, r) (p (r)) | | | | | | | q_39 | q_00100111 | 0 0 1 0 0 1 1 1 | (p, q)(p, r) = p q | | | | | | | q_40 | q_00101000 | 0 0 1 0 1 0 0 0 | (p , q) r | | | | | | | q_41 | q_00101001 | 0 0 1 0 1 0 0 1 | ((p), (q), r) | | | | | | | q_42 | q_00101010 | 0 0 1 0 1 0 1 0 | (p q) r | | | | | | | q_43 | q_00101011 | 0 0 1 0 1 0 1 1 | (p)(q) r + ((p),(q), r ) | | | | | | | q_44 | q_00101100 | 0 0 1 0 1 1 0 0 | (p, q) (p (r)) | | | | | | | q_45 | q_00101101 | 0 0 1 0 1 1 0 1 | ((p , (q) r)) | | | | | | | q_46 | q_00101110 | 0 0 1 0 1 1 1 0 | ((r (q))(q (p))) | | | | | | | q_47 | q_00101111 | 0 0 1 0 1 1 1 1 | (p ((q) r)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_48 | q_00110000 | 0 0 1 1 0 0 0 0 | p (q) | | | | | | | q_49 | q_00110001 | 0 0 1 1 0 0 0 1 | ((p) r) (q) | | | | | | | q_50 | q_00110010 | 0 0 1 1 0 0 1 0 | ((p) (r)) (q) | | | | | | | q_51 | q_00110011 | 0 0 1 1 0 0 1 1 | (q) | | | | | | | q_52 | q_00110100 | 0 0 1 1 0 1 0 0 | (p, q)((p) r) | | | | | | | q_53 | q_00110101 | 0 0 1 1 0 1 0 1 | (p, r)(q, r) = q r | | | | | | | q_54 | q_00110110 | 0 0 1 1 0 1 1 0 | ((q , (p) (r))) | | | | | | | q_55 | q_00110111 | 0 0 1 1 0 1 1 1 | (((p) (r)) q) | | | | | | | q_56 | q_00111000 | 0 0 1 1 1 0 0 0 | (p, q) (q (r)) | | | | | | | q_57 | q_00111001 | 0 0 1 1 1 0 0 1 | ((q , (p) r)) | | | | | | | q_58 | q_00111010 | 0 0 1 1 1 0 1 0 | ((r (p))(p (q))) | | | | | | | q_59 | q_00111011 | 0 0 1 1 1 0 1 1 | (((p) r) q) | | | | | | | q_60 | q_00111100 | 0 0 1 1 1 1 0 0 | (p , q) | | | | | | | q_61 | q_00111101 | 0 0 1 1 1 1 0 1 | r = ( p , q , r ) | | | | | | | q_62 | q_00111110 | 0 0 1 1 1 1 1 0 | (((p, q)) ((p) r)) | | | | | | | q_63 | q_00111111 | 0 0 1 1 1 1 1 1 | (p q) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_64 | q_01000000 | 0 1 0 0 0 0 0 0 | p q (r) | | | | | | | q_65 | q_01000001 | 0 1 0 0 0 0 0 1 | ((p , q)) (r) | | | | | | | q_66 | q_01000010 | 0 1 0 0 0 0 1 0 | (p, r) (q, r) | | | | | | | q_67 | q_01000011 | 0 1 0 0 0 0 1 1 | r = ((p), (q), (r)) | | | | | | | q_68 | q_01000100 | 0 1 0 0 0 1 0 0 | q (r) | | | | | | | q_69 | q_01000101 | 0 1 0 0 0 1 0 1 | (p (q)) (r) | | | | | | | q_70 | q_01000110 | 0 1 0 0 0 1 1 0 | (q, r) (p (q)) | | | | | | | q_71 | q_01000111 | 0 1 0 0 0 1 1 1 | (p, q)(p, r) = p r | | | | | | | q_72 | q_01001000 | 0 1 0 0 1 0 0 0 | (p , r) q | | | | | | | q_73 | q_01001001 | 0 1 0 0 1 0 0 1 | ((p), q , (r)) | | | | | | | q_74 | q_01001010 | 0 1 0 0 1 0 1 0 | (p, r) (p (q)) | | | | | | | q_75 | q_01001011 | 0 1 0 0 1 0 1 1 | ((p , q (r))) | | | | | | | q_76 | q_01001100 | 0 1 0 0 1 1 0 0 | (p r) q | | | | | | | q_77 | q_01001101 | 0 1 0 0 1 1 0 1 | (p) q (r) + ((p), q ,(r)) | | | | | | | q_78 | q_01001110 | 0 1 0 0 1 1 1 0 | ((q (r))(r (p))) | | | | | | | q_79 | q_01001111 | 0 1 0 0 1 1 1 1 | (p (q (r))) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_80 | q_01010000 | 0 1 0 1 0 0 0 0 | p (r) | | | | | | | q_81 | q_01010001 | 0 1 0 1 0 0 0 1 | ((p) q) (r) | | | | | | | q_82 | q_01010010 | 0 1 0 1 0 0 1 0 | (p, r)((p) q) | | | | | | | q_83 | q_01010011 | 0 1 0 1 0 0 1 1 | (p, q)(q, r) = q r | | | | | | | q_84 | q_01010100 | 0 1 0 1 0 1 0 0 | ((p) (q)) (r) | | | | | | | q_85 | q_01010101 | 0 1 0 1 0 1 0 1 | (r) | | | | | | | q_86 | q_01010110 | 0 1 0 1 0 1 1 0 | ((r , (p) (q))) | | | | | | | q_87 | q_01010111 | 0 1 0 1 0 1 1 1 | (((p) (q)) r) | | | | | | | q_88 | q_01011000 | 0 1 0 1 1 0 0 0 | (p, r)((q) r) | | | | | | | q_89 | q_01011001 | 0 1 0 1 1 0 0 1 | ((r , (p) q)) | | | | | | | q_90 | q_01011010 | 0 1 0 1 1 0 1 0 | (p , r) | | | | | | | q_91 | q_01011011 | 0 1 0 1 1 0 1 1 | q = ( p , q , r ) | | | | | | | q_92 | q_01011100 | 0 1 0 1 1 1 0 0 | ((q (p))(p (r))) | | | | | | | q_93 | q_01011101 | 0 1 0 1 1 1 0 1 | (((p) q) r) | | | | | | | q_94 | q_01011110 | 0 1 0 1 1 1 1 0 | (((p, r)) ((p) q)) | | | | | | | q_95 | q_01011111 | 0 1 0 1 1 1 1 1 | (p r) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_96 | q_01100000 | 0 1 1 0 0 0 0 0 | p (q , r) | | | | | | | q_97 | q_01100001 | 0 1 1 0 0 0 0 1 | (p , (q), (r)) | | | | | | | q_98 | q_01100010 | 0 1 1 0 0 0 1 0 | (q, r)((p) q) | | | | | | | q_99 | q_01100011 | 0 1 1 0 0 0 1 1 | ((q , p (r))) | | | | | | | q_100 | q_01100100 | 0 1 1 0 0 1 0 0 | (q, r)((p) r) | | | | | | | q_101 | q_01100101 | 0 1 1 0 0 1 0 1 | ((r , p (q))) | | | | | | | q_102 | q_01100110 | 0 1 1 0 0 1 1 0 | (q , r) | | | | | | | q_103 | q_01100111 | 0 1 1 0 0 1 1 1 | p = ( p , q , r ) | | | | | | | q_104 | q_01101000 | 0 1 1 0 1 0 0 0 | (p , q , r) | | | | | | | q_105 | q_01101001 | 0 1 1 0 1 0 0 1 | ((p , (q , r))) | | | | | | | q_106 | q_01101010 | 0 1 1 0 1 0 1 0 | ((r , (p q))) | | | | | | | q_107 | q_01101011 | 0 1 1 0 1 0 1 1 | ((p , q , (r))) | | | | | | | q_108 | q_01101100 | 0 1 1 0 1 1 0 0 | ((q , (p r))) | | | | | | | q_109 | q_01101101 | 0 1 1 0 1 1 0 1 | ((p , (q), r)) | | | | | | | q_110 | q_01101110 | 0 1 1 0 1 1 1 0 | (((p) q)((q, r))) | | | | | | | q_111 | q_01101111 | 0 1 1 0 1 1 1 1 | (p ((q , r))) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_112 | q_01110000 | 0 1 1 1 0 0 0 0 | p (q r) | | | | | | | q_113 | q_01110001 | 0 1 1 1 0 0 0 1 | p (q)(r) + ( p ,(q),(r)) | | | | | | | q_114 | q_01110010 | 0 1 1 1 0 0 1 0 | ((p (r))(r (q))) | | | | | | | q_115 | q_01110011 | 0 1 1 1 0 0 1 1 | ((p (r)) q) | | | | | | | q_116 | q_01110100 | 0 1 1 1 0 1 0 0 | ((p (q))(q (r))) | | | | | | | q_117 | q_01110101 | 0 1 1 1 0 1 0 1 | ((p (q)) r) | | | | | | | q_118 | q_01110110 | 0 1 1 1 0 1 1 0 | (((q, r))(p (q))) | | | | | | | q_119 | q_01110111 | 0 1 1 1 0 1 1 1 | (q r) | | | | | | | q_120 | q_01111000 | 0 1 1 1 1 0 0 0 | ((p , (q r))) | | | | | | | q_121 | q_01111001 | 0 1 1 1 1 0 0 1 | (((p), q , r)) | | | | | | | q_122 | q_01111010 | 0 1 1 1 1 0 1 0 | (((p, r))(p (q))) | | | | | | | q_123 | q_01111011 | 0 1 1 1 1 0 1 1 | (((p , r)) q) | | | | | | | q_124 | q_01111100 | 0 1 1 1 1 1 0 0 | (((p, q))(p (r))) | | | | | | | q_125 | q_01111101 | 0 1 1 1 1 1 0 1 | (((p , q)) r) | | | | | | | q_126 | q_01111110 | 0 1 1 1 1 1 1 0 | (((p, q)) ((q, r))) | | | | | | | q_127 | q_01111111 | 0 1 1 1 1 1 1 1 | (p q r) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_128 | q_10000000 | 1 0 0 0 0 0 0 0 | p q r | | | | | | | q_129 | q_10000001 | 1 0 0 0 0 0 0 1 | ((p, q)) ((q, r)) | | | | | | | q_130 | q_10000010 | 1 0 0 0 0 0 1 0 | ((p , q)) r | | | | | | | q_131 | q_10000011 | 1 0 0 0 0 0 1 1 | ((p, q)) (p (r)) | | | | | | | q_132 | q_10000100 | 1 0 0 0 0 1 0 0 | ((p , r)) q | | | | | | | q_133 | q_10000101 | 1 0 0 0 0 1 0 1 | ((p, r)) (p (q)) | | | | | | | q_134 | q_10000110 | 1 0 0 0 0 1 1 0 | ((p), q , r) | | | | | | | q_135 | q_10000111 | 1 0 0 0 0 1 1 1 | ((p , q r)) | | | | | | | q_136 | q_10001000 | 1 0 0 0 1 0 0 0 | q r | | | | | | | q_137 | q_10001001 | 1 0 0 0 1 0 0 1 | ((q, r)) (p (q)) | | | | | | | q_138 | q_10001010 | 1 0 0 0 1 0 1 0 | (p (q)) r | | | | | | | q_139 | q_10001011 | 1 0 0 0 1 0 1 1 | (p (q))(q (r)) | | | | | | | q_140 | q_10001100 | 1 0 0 0 1 1 0 0 | (p (r)) q | | | | | | | q_141 | q_10001101 | 1 0 0 0 1 1 0 1 | (p (r))(r (q)) | | | | | | | q_142 | q_10001110 | 1 0 0 0 1 1 1 0 | (p) q r + ((p), q , r ) | | | | | | | q_143 | q_10001111 | 1 0 0 0 1 1 1 1 | (p (q r)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_144 | q_10010000 | 1 0 0 1 0 0 0 0 | p ((q , r)) | | | | | | | q_145 | q_10010001 | 1 0 0 1 0 0 0 1 | ((p) q)((q, r)) | | | | | | | q_146 | q_10010010 | 1 0 0 1 0 0 1 0 | (p , (q), r) | | | | | | | q_147 | q_10010011 | 1 0 0 1 0 0 1 1 | ((q , p r)) | | | | | | | q_148 | q_10010100 | 1 0 0 1 0 1 0 0 | (p , q , (r)) | | | | | | | q_149 | q_10010101 | 1 0 0 1 0 1 0 1 | ((r , p q)) | | | | | | | q_150 | q_10010110 | 1 0 0 1 0 1 1 0 | (p , (q , r)) | | | | | | | q_151 | q_10010111 | 1 0 0 1 0 1 1 1 | ((p , q , r)) | | | | | | | q_152 | q_10011000 | 1 0 0 1 1 0 0 0 | p + ( p , q , r ) | | | | | | | q_153 | q_10011001 | 1 0 0 1 1 0 0 1 | ((q , r)) | | | | | | | q_154 | q_10011010 | 1 0 0 1 1 0 1 0 | ((r , (p (q)))) | | | | | | | q_155 | q_10011011 | 1 0 0 1 1 0 1 1 | ((q, r)((p) r)) | | | | | | | q_156 | q_10011100 | 1 0 0 1 1 1 0 0 | ((q , (p (r)))) | | | | | | | q_157 | q_10011101 | 1 0 0 1 1 1 0 1 | ((q, r)((p) q)) | | | | | | | q_158 | q_10011110 | 1 0 0 1 1 1 1 0 | ((p , (q), (r))) | | | | | | | q_159 | q_10011111 | 1 0 0 1 1 1 1 1 | (p (q , r)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_160 | q_10100000 | 1 0 1 0 0 0 0 0 | p r | | | | | | | q_161 | q_10100001 | 1 0 1 0 0 0 0 1 | ((p, r)) ((p) q) | | | | | | | q_162 | q_10100010 | 1 0 1 0 0 0 1 0 | ((p) q) r | | | | | | | q_163 | q_10100011 | 1 0 1 0 0 0 1 1 | (q (p))(p (r)) | | | | | | | q_164 | q_10100100 | 1 0 1 0 0 1 0 0 | q + ( p , q , r ) | | | | | | | q_165 | q_10100101 | 1 0 1 0 0 1 0 1 | ((p , r)) | | | | | | | q_166 | q_10100110 | 1 0 1 0 0 1 1 0 | ((r ,((p) q))) | | | | | | | q_167 | q_10100111 | 1 0 1 0 0 1 1 1 | ((p, r)((q) r)) | | | | | | | q_168 | q_10101000 | 1 0 1 0 1 0 0 0 | ((p) (q)) r | | | | | | | q_169 | q_10101001 | 1 0 1 0 1 0 0 1 | ((r ,((p) (q)))) | | | | | | | q_170 | q_10101010 | 1 0 1 0 1 0 1 0 | r | | | | | | | q_171 | q_10101011 | 1 0 1 0 1 0 1 1 | (((p) (q)) (r)) | | | | | | | q_172 | q_10101100 | 1 0 1 0 1 1 0 0 | (p, q)(q, r) + q r | | | | | | | q_173 | q_10101101 | 1 0 1 0 1 1 0 1 | ((p, r)((p) q)) | | | | | | | q_174 | q_10101110 | 1 0 1 0 1 1 1 0 | (((p) q) (r)) | | | | | | | q_175 | q_10101111 | 1 0 1 0 1 1 1 1 | (p (r)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_176 | q_10110000 | 1 0 1 1 0 0 0 0 | p (q (r)) | | | | | | | q_177 | q_10110001 | 1 0 1 1 0 0 0 1 | (q (r))(r (p)) | | | | | | | q_178 | q_10110010 | 1 0 1 1 0 0 1 0 | p (q) r + ( p ,(q), r ) | | | | | | | q_179 | q_10110011 | 1 0 1 1 0 0 1 1 | ((p r) q) | | | | | | | q_180 | q_10110100 | 1 0 1 1 0 1 0 0 | ((p , (q (r)))) | | | | | | | q_181 | q_10110101 | 1 0 1 1 0 1 0 1 | ((p, r) (p (q))) | | | | | | | q_182 | q_10110110 | 1 0 1 1 0 1 1 0 | (((p), q , (r))) | | | | | | | q_183 | q_10110111 | 1 0 1 1 0 1 1 1 | ((p , r) q | | | | | | | q_184 | q_10111000 | 1 0 1 1 1 0 0 0 | (p, q)(p, r) + p r | | | | | | | q_185 | q_10111001 | 1 0 1 1 1 0 0 1 | ((q, r) (p (q))) | | | | | | | q_186 | q_10111010 | 1 0 1 1 1 0 1 0 | ((p (q)) (r)) | | | | | | | q_187 | q_10111011 | 1 0 1 1 1 0 1 1 | (q (r)) | | | | | | | q_188 | q_10111100 | 1 0 1 1 1 1 0 0 | r + ((p), (q), (r)) | | | | | | | q_189 | q_10111101 | 1 0 1 1 1 1 0 1 | ((p, r) (q, r)) | | | | | | | q_190 | q_10111110 | 1 0 1 1 1 1 1 0 | (((p , q)) (r)) | | | | | | | q_191 | q_10111111 | 1 0 1 1 1 1 1 1 | (p q (r)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_192 | q_11000000 | 1 1 0 0 0 0 0 0 | p q | | | | | | | q_193 | q_11000001 | 1 1 0 0 0 0 0 1 | ((p, q)) ((p) r) | | | | | | | q_194 | q_11000010 | 1 1 0 0 0 0 1 0 | r + ( p , q , r ) | | | | | | | q_195 | q_11000011 | 1 1 0 0 0 0 1 1 | ((p , q)) | | | | | | | q_196 | q_11000100 | 1 1 0 0 0 1 0 0 | ((p) r) q | | | | | | | q_197 | q_11000101 | 1 1 0 0 0 1 0 1 | (r (p))(p (q)) | | | | | | | q_198 | q_11000110 | 1 1 0 0 0 1 1 0 | ((q ,((p) r))) | | | | | | | q_199 | q_11000111 | 1 1 0 0 0 1 1 1 | ((p, q) (q (r))) | | | | | | | q_200 | q_11001000 | 1 1 0 0 1 0 0 0 | ((p) (r)) q | | | | | | | q_201 | q_11001001 | 1 1 0 0 1 0 0 1 | ((q ,((p) (r)))) | | | | | | | q_202 | q_11001010 | 1 1 0 0 1 0 1 0 | (p, r)(q, r) + q r | | | | | | | q_203 | q_11001011 | 1 1 0 0 1 0 1 1 | ((p, q) ((p) r)) | | | | | | | q_204 | q_11001100 | 1 1 0 0 1 1 0 0 | q | | | | | | | q_205 | q_11001101 | 1 1 0 0 1 1 0 1 | (((p) (r)) (q)) | | | | | | | q_206 | q_11001110 | 1 1 0 0 1 1 1 0 | (((p) r) (q)) | | | | | | | q_207 | q_11001111 | 1 1 0 0 1 1 1 1 | (p (q)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_208 | q_11010000 | 1 1 0 1 0 0 0 0 | p ((q) r) | | | | | | | q_209 | q_11010001 | 1 1 0 1 0 0 0 1 | (r (q))(q (p)) | | | | | | | q_210 | q_11010010 | 1 1 0 1 0 0 1 0 | ((p ,((q) r))) | | | | | | | q_211 | q_11010011 | 1 1 0 1 0 0 1 1 | ((p, q) (p (r))) | | | | | | | q_212 | q_11010100 | 1 1 0 1 0 1 0 0 | p q (r) + ( p , q ,(r)) | | | | | | | q_213 | q_11010101 | 1 1 0 1 0 1 0 1 | ((p q) r) | | | | | | | q_214 | q_11010110 | 1 1 0 1 0 1 1 0 | (((p), (q), r)) | | | | | | | q_215 | q_11010111 | 1 1 0 1 0 1 1 1 | ((p , q) r) | | | | | | | q_216 | q_11011000 | 1 1 0 1 1 0 0 0 | (p, q)(p, r) + p q | | | | | | | q_217 | q_11011001 | 1 1 0 1 1 0 0 1 | ((q, r) (p (r))) | | | | | | | q_218 | q_11011010 | 1 1 0 1 1 0 1 0 | q + ((p), (q), (r)) | | | | | | | q_219 | q_11011011 | 1 1 0 1 1 0 1 1 | ((p, q) (q, r)) | | | | | | | q_220 | q_11011100 | 1 1 0 1 1 1 0 0 | ((p (r)) (q)) | | | | | | | q_221 | q_11011101 | 1 1 0 1 1 1 0 1 | ((q) r) | | | | | | | q_222 | q_11011110 | 1 1 0 1 1 1 1 0 | (((p , r)) (q)) | | | | | | | q_223 | q_11011111 | 1 1 0 1 1 1 1 1 | (p (q) r) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_224 | q_11100000 | 1 1 1 0 0 0 0 0 | p ((q) (r)) | | | | | | | q_225 | q_11100001 | 1 1 1 0 0 0 0 1 | (p, (q) (r)) | | | | | | | q_226 | q_11100010 | 1 1 1 0 0 0 1 0 | (p, r)(q, r) + p r | | | | | | | q_227 | q_11100011 | 1 1 1 0 0 0 1 1 | ((p, q)((q) r)) | | | | | | | q_228 | q_11100100 | 1 1 1 0 0 1 0 0 | (p, q)(q, r) + p q | | | | | | | q_229 | q_11100101 | 1 1 1 0 0 1 0 1 | ((p, r) (q (r))) | | | | | | | q_230 | q_11100110 | 1 1 1 0 0 1 1 0 | p + ((p), (q), (r)) | | | | | | | q_231 | q_11100111 | 1 1 1 0 0 1 1 1 | ((p, q) (p, r)) | | | | | | | q_232 | q_11101000 | 1 1 1 0 1 0 0 0 | p q r + ( p , q , r ) | | | | | | | q_233 | q_11101001 | 1 1 1 0 1 0 0 1 | (((p), (q), (r))) | | | | | | | q_234 | q_11101010 | 1 1 1 0 1 0 1 0 | ((p q) (r)) | | | | | | | q_235 | q_11101011 | 1 1 1 0 1 0 1 1 | ((p, q) (r)) | | | | | | | q_236 | q_11101100 | 1 1 1 0 1 1 0 0 | ((p r) (q)) | | | | | | | q_237 | q_11101101 | 1 1 1 0 1 1 0 1 | ((p, r) (q)) | | | | | | | q_238 | q_11101110 | 1 1 1 0 1 1 1 0 | ((q) (r)) | | | | | | | q_239 | q_11101111 | 1 1 1 0 1 1 1 1 | (p (q) (r)) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_240 | q_11110000 | 1 1 1 1 0 0 0 0 | p | | | | | | | q_241 | q_11110001 | 1 1 1 1 0 0 0 1 | ((p) ((q) (r))) | | | | | | | q_242 | q_11110010 | 1 1 1 1 0 0 1 0 | ((p) ((q) r)) | | | | | | | q_243 | q_11110011 | 1 1 1 1 0 0 1 1 | ((p) q) | | | | | | | q_244 | q_11110100 | 1 1 1 1 0 1 0 0 | ((p) (q (r))) | | | | | | | q_245 | q_11110101 | 1 1 1 1 0 1 0 1 | ((p) r) | | | | | | | q_246 | q_11110110 | 1 1 1 1 0 1 1 0 | ((p) ((q, r))) | | | | | | | q_247 | q_11110111 | 1 1 1 1 0 1 1 1 | ((p) q r) | | | | | | | q_248 | q_11111000 | 1 1 1 1 1 0 0 0 | ((p) (q r)) | | | | | | | q_249 | q_11111001 | 1 1 1 1 1 0 0 1 | ((p) (q, r)) | | | | | | | q_250 | q_11111010 | 1 1 1 1 1 0 1 0 | ((p) (r)) | | | | | | | q_251 | q_11111011 | 1 1 1 1 1 0 1 1 | ((p) q (r)) | | | | | | | q_252 | q_11111100 | 1 1 1 1 1 1 0 0 | ((p) (q)) | | | | | | | q_253 | q_11111101 | 1 1 1 1 1 1 0 1 | ((p) (q) r) | | | | | | | q_254 | q_11111110 | 1 1 1 1 1 1 1 0 | ((p) (q) (r)) | | | | | | | q_255 | q_11111111 | 1 1 1 1 1 1 1 1 | (( )) | | | | | | o---------o------------o-----------------o---------------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules -- Work Area 1 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | / \ \ / / \ | | / \ o / \ | | / \ / \ / \ | | / \ / \ / \ | | o o---o-----o---o o | | | | | | | | | | | | | | | Q | | R | | | o o o o | | \ \ / / | | \ \ / / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o Figure 0. Null Universe o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/```````````````\````````````````| |```````````````/`````````````````\```````````````| |``````````````/```````````````````\``````````````| |`````````````/`````````````````````\`````````````| |````````````o```````````````````````o````````````| |````````````|`````````` P ``````````|````````````| |````````````|```````````````````````|````````````| |````````````|```````````````````````|````````````| |````````o---o---------o```o---------o---o````````| |```````/`````\`````````\`/`````````/`````\```````| |``````/```````\`````````o`````````/```````\``````| |`````/`````````\```````/`\```````/`````````\`````| |````/```````````\`````/```\`````/```````````\````| |```o`````````````o---o-----o---o`````````````o```| |```|`````````````````|`````|`````````````````|```| |```|`````````````````|`````|`````````````````|```| |```|``````` Q ```````|`````|``````` R ```````|```| |```o`````````````````o`````o`````````````````o```| |````\`````````````````\```/`````````````````/````| |`````\`````````````````\`/`````````````````/`````| |``````\`````````````````o`````````````````/``````| |```````\```````````````/`\```````````````/```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o Figure 1. Full Universe o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules -- Work Area 2 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 1. Boundaries and Their Complements o---------o------------o-----------------o---------------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------------o | | | | | | q_22 | q_00010110 | 0 0 0 1 0 1 1 0 | ((p), (q), (r)) | | | | | | | q_41 | q_00101001 | 0 0 1 0 1 0 0 1 | ((p), (q), r ) | | | | | | | q_73 | q_01001001 | 0 1 0 0 1 0 0 1 | ((p), q , (r)) | | | | | | | q_134 | q_10000110 | 1 0 0 0 0 1 1 0 | ((p), q , r ) | | | | | | | q_97 | q_01100001 | 0 1 1 0 0 0 0 1 | ( p , (q), (r)) | | | | | | | q_146 | q_10010010 | 1 0 0 1 0 0 1 0 | ( p , (q), r ) | | | | | | | q_148 | q_10010100 | 1 0 0 1 0 1 0 0 | ( p , q , (r)) | | | | | | | q_104 | q_01101000 | 0 1 1 0 1 0 0 0 | ( p , q , r ) | | | | | | o---------o------------o-----------------o---------------------------o | | | | | | q_233 | q_11101001 | 1 1 1 0 1 0 0 1 | (((p), (q), (r))) | | | | | | | q_214 | q_11010110 | 1 1 0 1 0 1 1 0 | (((p), (q), r )) | | | | | | | q_182 | q_10110110 | 1 0 1 1 0 1 1 0 | (((p), q , (r))) | | | | | | | q_121 | q_01111001 | 0 1 1 1 1 0 0 1 | (((p), q , r )) | | | | | | | q_158 | q_10011110 | 1 0 0 1 1 1 1 0 | (( p , (q), (r))) | | | | | | | q_109 | q_01101101 | 0 1 1 0 1 1 0 1 | (( p , (q), r )) | | | | | | | q_107 | q_01101011 | 0 1 1 0 1 0 1 1 | (( p , q , (r))) | | | | | | | q_151 | q_10010111 | 1 0 0 1 0 1 1 1 | (( p , q , r )) | | | | | | o---------o------------o-----------------o---------------------------o o-------------------------------------------------o | | | | | o-------------o | | /```````````````\ | | /`````````````````\ | | /```````````````````\ | | /`````````````````````\ | | o```````````````````````o | | |```````````P```````````| | | |```````````````````````| | | |```````````````````````| | | o---o---------o```o---------o---o | | /`````\ \`/ /`````\ | | /```````\ o /```````\ | | /`````````\ / \ /`````````\ | | /```````````\ / \ /```````````\ | | o```````````` o---o-----o---o`````````````o | | |`````````````````| |`````````````````| | | |`````````````````| |`````````````````| | | |``````` Q ```````| |``````` R ```````| | | o`````````````````o o`````````````````o | | \`````````````````\ /`````````````````/ | | \`````````````````\ /`````````````````/ | | \`````````````````o`````````````````/ | | \```````````````/ \```````````````/ | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_22. ((p),(q),(r)) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | /`````\`````````\ /`````````/`````\ | | /```````\`````````o`````````/```````\ | | /`````````\```````/`\```````/`````````\ | | /```````````\`````/```\`````/```````````\ | | o```````````` o---o-----o---o`````````````o | | |`````````````````| |`````````````````| | | |`````````````````| |`````````````````| | | |``````` Q ```````| |``````` R ```````| | | o`````````````````o o`````````````````o | | \`````````````````\ /`````````````````/ | | \`````````````````\ /`````````````````/ | | \`````````````````o`````````````````/ | | \```````````````/ \```````````````/ | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_25. p + ((p),(q),(r)) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | / \ \ /`````````/`````\ | | / \ o`````````/```````\ | | / \ / \```````/`````````\ | | / \ / \`````/```````````\ | | o o---o-----o---o`````````````o | | | |`````|`````````````````| | | | |`````|`````````````````| | | | Q |`````|``````` R ```````| | | o o`````o`````````````````o | | \ \```/`````````````````/ | | \ \`/`````````````````/ | | \ o`````````````````/ | | \ / \```````````````/ | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_42. p + q + ((p),(q),(r)) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | / \`````````\ /`````````/ \ | | / \`````````o`````````/ \ | | / \```````/ \```````/ \ | | / \`````/ \`````/ \ | | o o---o-----o---o o | | | |`````| | | | | |`````| | | | | Q |`````| R | | | o o`````o o | | \ \```/ / | | \ \`/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_104. (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | /```````````````\ | | /`````````````````\ | | /```````````````````\ | | /`````````````````````\ | | o```````````````````````o | | |`````````` P ``````````| | | |```````````````````````| | | |```````````````````````| | | o---o---------o```o---------o---o | | / \ \`/ / \ | | / \ o / \ | | / \ /`\ / \ | | / \ /```\ / \ | | o o---o-----o---o o | | | |`````| | | | | |`````| | | | | Q |`````| R | | | o o`````o o | | \ \```/ / | | \ \`/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_152. p + (p, q, r) o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/ \````````````````| |```````````````/ \```````````````| |``````````````/ \``````````````| |`````````````/ \`````````````| |````````````o o````````````| |````````````| P |````````````| |````````````| |````````````| |````````````| |````````````| |````````o---o---------o o---------o---o````````| |```````/ \ \ /`````````/ \```````| |``````/ \ o`````````/ \``````| |`````/ \ / \```````/ \`````| |````/ \ / \`````/ \````| |```o o---o-----o---o o```| |```| |`````| |```| |```| |`````| |```| |```| Q |`````| R |```| |```o o`````o o```| |````\ \```/ /````| |`````\ \`/ /`````| |``````\ o /``````| |```````\ /`\ /```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_41. ((p),(q), r) o---------o------------o-----------------o---------------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------------o | | | | | | q_216 | | 1 1 0 1 1 0 0 0 | | | | | | | | q_217 | | 1 1 0 1 1 0 0 1 | p + ((p),(q), r) | | | | | | | q_131 | | 1 0 0 0 0 0 1 1 | r + ((p),(q), r) | | | | | | o---------o------------o-----------------o---------------------------o o-------------------------------------------------o | | | | | o-------------o | | /```````````````\ | | /`````````````````\ | | /```````````````````\ | | /`````````````````````\ | | o```````````````````````o | | |```````````P```````````| | | |```````````````````````| | | |```````````````````````| | | o---o---------o```o---------o---o | | /`````\`````````\`/ /`````\ | | /```````\`````````o /```````\ | | /`````````\```````/`\ /`````````\ | | /```````````\`````/```\ /```````````\ | | o```````````` o---o-----o---o`````````````o | | |`````````````````| |`````````````````| | | |`````````````````| |`````````````````| | | |``````` Q ```````| |``````` R ```````| | | o`````````````````o o`````````````````o | | \`````````````````\ /`````````````````/ | | \`````````````````\ /`````````````````/ | | \`````````````````o`````````````````/ | | \```````````````/ \```````````````/ | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_214. pq + ((p),(q),(r)) o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/```````````````\````````````````| |```````````````/`````````````````\```````````````| |``````````````/```````````````````\``````````````| |`````````````/`````````````````````\`````````````| |````````````o```````````````````````o````````````| |````````````|`````````` P ``````````|````````````| |````````````|```````````````````````|````````````| |````````````|```````````````````````|````````````| |````````o---o---------o```o---------o---o````````| |```````/ \`````````\`/ / \```````| |``````/ \`````````o / \``````| |`````/ \```````/`\ / \`````| |````/ \`````/```\ / \````| |```o o---o-----o---o o```| |```| |`````| |```| |```| |`````| |```| |```| Q |`````| R |```| |```o o`````o o```| |````\ \```/ /````| |`````\ \`/ /`````| |``````\ o /``````| |```````\ /`\ /```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_217. p + ((p),(q), r) o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/ \````````````````| |```````````````/ \```````````````| |``````````````/ \``````````````| |`````````````/ \`````````````| |````````````o o````````````| |````````````| P |````````````| |````````````| |````````````| |````````````| |````````````| |````````o---o---------o o---------o---o````````| |```````/ \ \ / /`````\```````| |``````/ \ o /```````\``````| |`````/ \ /`\ /`````````\`````| |````/ \ /```\ /```````````\````| |```o o---o-----o---o`````````````o```| |```| | |`````````````````|```| |```| | |`````````````````|```| |```| Q | |``````` R ```````|```| |```o o o`````````````````o```| |````\ \ /`````````````````/````| |`````\ \ /`````````````````/`````| |``````\ o`````````````````/``````| |```````\ /`\```````````````/```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_131. r + ((p),(q), r) o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules -- Work Area 3 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o o-------------------------------------------------o | | | | | o-------------o | | /```````````````\ | | /`````````````````\ | | /```````````````````\ | | /`````````````````````\ | | o```````````````````````o | | |`````````` P ``````````| | | |```````````````````````| | | |```````````````````````| | | o---o---------o```o---------o---o | | / \ \`/ / \ | | / \ o / \ | | / \ / \ / \ | | / \ / \ / \ | | o o---o-----o---o o | | | |`````| | | | | |`````| | | | | Q |`````| R | | | o o`````o o | | \ \```/ / | | \ \`/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_24. (p, q) (p, r) q_24. p + p q r + (p, q, r) o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/```````````````\````````````````| |```````````````/`````````````````\```````````````| |``````````````/```````````````````\``````````````| |`````````````/`````````````````````\`````````````| |````````````o```````````````````````o````````````| |````````````|```````````P```````````|````````````| |````````````|```````````````````````|````````````| |````````````|```````````````````````|````````````| |````````o---o---------o```o---------o---o````````| |```````/ \ \`/ / \```````| |``````/ \ o / \``````| |`````/ \ / \ / \`````| |````/ \ / \ / \````| |```o o---o-----o---o o```| |```| |`````| |```| |```| |`````| |```| |```| Q |`````| R |```| |```o o`````o o```| |````\ \```/ /````| |`````\ \`/ /`````| |``````\ o /``````| |```````\ /`\ /```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_25. o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/```````````````\````````````````| |```````````````/`````````````````\```````````````| |``````````````/```````````````````\``````````````| |`````````````/`````````````````````\`````````````| |````````````o```````````````````````o````````````| |````````````|`````````` P ``````````|````````````| |````````````|```````````````````````|````````````| |````````````|```````````````````````|````````````| |````````o---o---------o```o---------o---o````````| |```````/ \ \`/ /`````\```````| |``````/ \ o /```````\``````| |`````/ \ / \ /`````````\`````| |````/ \ / \ /```````````\````| |```o o---o-----o---o`````````````o```| |```| |`````|`````````````````|```| |```| |`````|`````````````````|```| |```| Q |`````|``````` R ```````|```| |```o o`````o`````````````````o```| |````\ \```/`````````````````/````| |`````\ \`/`````````````````/`````| |``````\ o`````````````````/``````| |```````\ /`\```````````````/```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_27. o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/```````````````\````````````````| |```````````````/`````````````````\```````````````| |``````````````/```````````````````\``````````````| |`````````````/`````````````````````\`````````````| |````````````o```````````````````````o````````````| |````````````|`````````` P ``````````|````````````| |````````````|```````````````````````|````````````| |````````````|```````````````````````|````````````| |````````o---o---------o```o---------o---o````````| |```````/`````\ \`/ / \```````| |``````/```````\ o / \``````| |`````/`````````\ / \ / \`````| |````/```````````\ / \ / \````| |```o`````````````o---o-----o---o o```| |```|`````````````````|`````| |```| |```|`````````````````|`````| |```| |```|``````` Q ```````|`````| R |```| |```o`````````````````o`````o o```| |````\`````````````````\```/ /````| |`````\`````````````````\`/ /`````| |``````\`````````````````o /``````| |```````\```````````````/`\ /```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_29. o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/ \````````````````| |```````````````/ \```````````````| |``````````````/ \``````````````| |`````````````/ \`````````````| |````````````o o````````````| |````````````| Q |````````````| |````````````| |````````````| |````````````| |````````````| |````````o---o---------o o---------o---o````````| |```````/`````\`````````\ / / \```````| |``````/```````\`````````o / \``````| |`````/`````````\```````/ \ / \`````| |````/```````````\`````/ \ / \````| |```o`````````````o---o-----o---o o```| |```|`````````````````|`````| |```| |```|`````````````````|`````| |```| |```|````````P````````|`````| R |```| |```o`````````````````o`````o o```| |````\`````````````````\```/ /````| |`````\`````````````````\`/ /`````| |``````\`````````````````o /``````| |```````\```````````````/`\ /```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_113. o---------o------------o-----------------o---------------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------------o | | | | | | q_97 | q_01100001 | 0 1 1 0 0 0 0 1 | ( p , (q), (r)) | | | | | | | q_225 | q_11100001 | 1 1 1 0 0 0 0 1 | ((p , ((q) (r)) )) | | | | | | o---------o------------o-----------------o---------------------------o o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/ \````````````````| |```````````````/ \```````````````| |``````````````/ \``````````````| |`````````````/ \`````````````| |````````````o o````````````| |````````````| P |````````````| |````````````| |````````````| |````````````| |````````````| |````````o---o---------o o---------o---o````````| |```````/ \`````````\ /`````````/ \```````| |``````/ \`````````o`````````/ \``````| |`````/ \```````/ \```````/ \`````| |````/ \`````/ \`````/ \````| |```o o---o-----o---o o```| |```| | | |```| |```| | | |```| |```| Q | | R |```| |```o o o o```| |````\ \ / /````| |`````\ \ / /`````| |``````\ o /``````| |```````\ /`\ /```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o Genus and Species q_97. (p, (q),(r)) o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/ \````````````````| |```````````````/ \```````````````| |``````````````/ \``````````````| |`````````````/ \`````````````| |````````````o o````````````| |````````````| P |````````````| |````````````| |````````````| |````````````| |````````````| |````````o---o---------o o---------o---o````````| |```````/ \`````````\ /`````````/ \```````| |``````/ \`````````o`````````/ \``````| |`````/ \```````/`\```````/ \`````| |````/ \`````/```\`````/ \````| |```o o---o-----o---o o```| |```| | | |```| |```| | | |```| |```| Q | | R |```| |```o o o o```| |````\ \ / /````| |`````\ \ / /`````| |``````\ o /``````| |```````\ /`\ /```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o Thematic Extension q_225. ((p, ((q)(r)) )) o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules -- Work Area 4 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o o---------o------------o-----------------o---------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o---------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o---------------------o | | | | | | q_112 | q_01110000 | 0 1 1 1 0 0 0 0 | p (q r) | | | | | | | q_76 | q_01001100 | 0 1 0 0 1 1 0 0 | q (p r) | | | | | | | q_42 | q_00101010 | 0 0 1 0 1 0 1 0 | r (p q) | | | | | | | q_7 | q_00000111 | 0 0 0 0 0 1 1 1 | (p) (q r) | | | | | | | q_19 | q_00010011 | 0 0 0 1 0 0 1 1 | (p r) (q) | | | | | | | q_21 | q_00010101 | 0 0 0 1 0 1 0 1 | (p q) (r) | | | | | | o---------o------------o-----------------o---------------------o | | | | | | q_143 | q_10001111 | 1 0 0 0 1 1 1 1 | (p (q r)) | | | | | | | q_179 | q_10110011 | 1 0 1 1 0 0 1 1 | (q (p r)) | | | | | | | q_213 | q_11010101 | 1 1 0 1 0 1 0 1 | (r (p q)) | | | | | | | q_248 | q_11111000 | 1 1 1 1 1 0 0 0 | ((p) (q r)) | | | | | | | q_236 | q_11101100 | 1 1 1 0 1 1 0 0 | ((q) (p r)) | | | | | | | q_234 | q_11101010 | 1 1 1 0 1 0 1 0 | ((r) (p q)) | | | | | | o---------o------------o-----------------o---------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules -- Tables Formatted for NKS o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Table 0. Simple Propositions o---------o------------o-----------------o-------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_240 ` | q_11110000 | 1 1 1 1 0 0 0 0 | ` `p` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_204 ` | q_11001100 | 1 1 0 0 1 1 0 0 | ` ` ` ` q ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_170 ` | q_10101010 | 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o Table 1. A Family of Propositional Forms On Three Variables o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_22 | q_00010110 | 0 0 0 1 0 1 1 0 | ((p), (q), (r)) | | | | | | | q_41 | q_00101001 | 0 0 1 0 1 0 0 1 | ((p), (q), r ) | | | | | | | q_73 | q_01001001 | 0 1 0 0 1 0 0 1 | ((p), q , (r)) | | | | | | | q_134 | q_10000110 | 1 0 0 0 0 1 1 0 | ((p), q , r ) | | | | | | | q_97 | q_01100001 | 0 1 1 0 0 0 0 1 | ( p , (q), (r)) | | | | | | | q_146 | q_10010010 | 1 0 0 1 0 0 1 0 | ( p , (q), r ) | | | | | | | q_148 | q_10010100 | 1 0 0 1 0 1 0 0 | ( p , q , (r)) | | | | | | | q_104 | q_01101000 | 0 1 1 0 1 0 0 0 | ( p , q , r ) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_233 | q_11101001 | 1 1 1 0 1 0 0 1 | (((p), (q), (r))) | | | | | | | q_214 | q_11010110 | 1 1 0 1 0 1 1 0 | (((p), (q), r )) | | | | | | | q_182 | q_10110110 | 1 0 1 1 0 1 1 0 | (((p), q , (r))) | | | | | | | q_121 | q_01111001 | 0 1 1 1 1 0 0 1 | (((p), q , r )) | | | | | | | q_158 | q_10011110 | 1 0 0 1 1 1 1 0 | (( p , (q), (r))) | | | | | | | q_109 | q_01101101 | 0 1 1 0 1 1 0 1 | (( p , (q), r )) | | | | | | | q_107 | q_01101011 | 0 1 1 0 1 0 1 1 | (( p , q , (r))) | | | | | | | q_151 | q_10010111 | 1 0 0 1 0 1 1 1 | (( p , q , r )) | | | | | | o---------o------------o-----------------o-------------------o Table 2. Linear Propositions and Their Complements o---------o------------o-----------------o-------------------o | L_1 | L_2 | L_3 | L_4 | | | | | | | Decimal | Binary | Vector | Cactus | o---------o------------o-----------------o-------------------o | | p : 1 1 1 1 0 0 0 0 | | | | q : 1 1 0 0 1 1 0 0 | | | | r : 1 0 1 0 1 0 1 0 | | o---------o------------o-----------------o-------------------o | | | | | | q_0 | q_00000000 | 0 0 0 0 0 0 0 0 | ( ) | | | | | | | q_240 | q_11110000 | 1 1 1 1 0 0 0 0 | p | | | | | | | q_204 | q_11001100 | 1 1 0 0 1 1 0 0 | q | | | | | | | q_170 | q_10101010 | 1 0 1 0 1 0 1 0 | r | | | | | | | q_60 | q_00111100 | 0 0 1 1 1 1 0 0 | (p , q) | | | | | | | q_90 | q_01011010 | 0 1 0 1 1 0 1 0 | (p , r) | | | | | | | q_102 | q_01100110 | 0 1 1 0 0 1 1 0 | (q , r) | | | | | | | q_150 | q_10010110 | 1 0 0 1 0 1 1 0 | (p , (q , r)) | | | | | | o---------o------------o-----------------o-------------------o | | | | | | q_255 | q_11111111 | 1 1 1 1 1 1 1 1 | (( )) | | | | | | | q_15 | q_00001111 | 0 0 0 0 1 1 1 1 | (p) | | | | | | | q_51 | q_00110011 | 0 0 1 1 0 0 1 1 | (q) | | | | | | | q_85 | q_01010101 | 0 1 0 1 0 1 0 1 | (r) | | | | | | | q_195 | q_11000011 | 1 1 0 0 0 0 1 1 | ((p , q)) | | | | | | | q_165 | q_10100101 | 1 0 1 0 0 1 0 1 | ((p , r)) | | | | | | | q_153 | q_10011001 | 1 0 0 1 1 0 0 1 | ((q , r)) | | | | | | | q_105 | q_01101001 | 0 1 1 0 1 0 0 1 | ((p , (q , r))) | | | | | | o---------o------------o-----------------o-------------------o Table 3. Positive Propositions and Their Complements o---------o------------o-----------------o-------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_255 ` | q_11111111 | 1 1 1 1 1 1 1 1 | ` ` ` (( )) ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_240 ` | q_11110000 | 1 1 1 1 0 0 0 0 | ` `p` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_204 ` | q_11001100 | 1 1 0 0 1 1 0 0 | ` ` ` ` q ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_170 ` | q_10101010 | 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_192 ` | q_11000000 | 1 1 0 0 0 0 0 0 | ` `p` ` q ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_160 ` | q_10100000 | 1 0 1 0 0 0 0 0 | ` `p` ` ` ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_136 ` | q_10001000 | 1 0 0 0 1 0 0 0 | ` ` ` ` q ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_128 ` | q_10000000 | 1 0 0 0 0 0 0 0 | ` `p` ` q ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_0 ` ` | q_00000000 | 0 0 0 0 0 0 0 0 | ` ` ` `( )` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_15` ` | q_00001111 | 0 0 0 0 1 1 1 1 | ` (p) ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_51` ` | q_00110011 | 0 0 1 1 0 0 1 1 | ` ` ` `(q)` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_85` ` | q_01010101 | 0 1 0 1 0 1 0 1 | ` ` ` ` ` ` (r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_63` ` | q_00111111 | 0 0 1 1 1 1 1 1 | ` (p` ` q)` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_95` ` | q_01011111 | 0 1 0 1 1 1 1 1 | ` (p` ` ` ` `r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_119 ` | q_01110111 | 0 1 1 1 0 1 1 1 | ` ` ` `(q ` `r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_127 ` | q_01111111 | 0 1 1 1 1 1 1 1 | ` (p` ` q ` `r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o Table 4. Singular Propositions and Their Complements o---------o------------o-----------------o-------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_1 ` ` | q_00000001 | 0 0 0 0 0 0 0 1 | ` (p) `(q)` (r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_2 ` ` | q_00000010 | 0 0 0 0 0 0 1 0 | ` (p) `(q)` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_4 ` ` | q_00000100 | 0 0 0 0 0 1 0 0 | ` (p) ` q ` (r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_8 ` ` | q_00001000 | 0 0 0 0 1 0 0 0 | ` (p) ` q ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_16` ` | q_00010000 | 0 0 0 1 0 0 0 0 | ` `p` `(q)` (r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_32` ` | q_00100000 | 0 0 1 0 0 0 0 0 | ` `p` `(q)` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_64` ` | q_01000000 | 0 1 0 0 0 0 0 0 | ` `p` ` q ` (r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_128 ` | q_10000000 | 1 0 0 0 0 0 0 0 | ` `p` ` q ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_254 ` | q_11111110 | 1 1 1 1 1 1 1 0 | `((p) `(q)` `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_253 ` | q_11111101 | 1 1 1 1 1 1 0 1 | `((p) `(q)` `r )` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_251 ` | q_11111011 | 1 1 1 1 1 0 1 1 | `((p) ` q ` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_247 ` | q_11110111 | 1 1 1 1 0 1 1 1 | `((p) ` q ` `r )` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_239 ` | q_11101111 | 1 1 1 0 1 1 1 1 | `( p` `(q)` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_223 ` | q_11011111 | 1 1 0 1 1 1 1 1 | `( p` `(q)` `r )` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_191 ` | q_10111111 | 1 0 1 1 1 1 1 1 | `( p` ` q ` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_127 ` | q_01111111 | 0 1 1 1 1 1 1 1 | `( p` ` q ` `r )` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o Table 5. Variations on a Theme of Implication o---------o------------o-----------------o-------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_207 ` | q_11001111 | 1 1 0 0 1 1 1 1 | ` (p ` (q)) ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_175 ` | q_10101111 | 1 0 1 0 1 1 1 1 | ` (p` ` ` ` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_187 ` | q_10111011 | 1 0 1 1 1 0 1 1 | ` ` ` `(q ` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_243 ` | q_11110011 | 1 1 1 1 0 0 1 1 | `((p) ` q)` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_245 ` | q_11110101 | 1 1 1 1 0 1 0 1 | `((p) ` ` ` `r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_221 ` | q_11011101 | 1 1 0 1 1 1 0 1 | ` ` ` ((q) ` r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_48` ` | q_00110000 | 0 0 1 1 0 0 0 0 | ` `p` `(q)` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_80` ` | q_01010000 | 0 1 0 1 0 0 0 0 | ` `p` ` ` ` (r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_68` ` | q_01000100 | 0 1 0 0 0 1 0 0 | ` ` ` ` q ` (r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_12` ` | q_00001100 | 0 0 0 0 1 1 0 0 | ` (p) ` q ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_10` ` | q_00001010 | 0 0 0 0 1 0 1 0 | ` (p) ` ` ` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_34` ` | q_00100010 | 0 0 1 0 0 0 1 0 | ` ` ` `(q)` `r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o Table 6. More Variations on a Theme of Implication o---------o------------o-----------------o-------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_176 ` | q_10110000 | 1 0 1 1 0 0 0 0 | ` `p` `(q ` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_208 ` | q_11010000 | 1 1 0 1 0 0 0 0 | ` `p` `(r ` (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_11` ` | q_00001011 | 0 0 0 0 1 0 1 1 | ` (p) `(q ` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_13` ` | q_00001101 | 0 0 0 0 1 1 0 1 | ` (p) `(r ` (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_140 ` | q_10001100 | 1 0 0 0 1 1 0 0 | ` `q` `(p ` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_196 ` | q_11000100 | 1 1 0 0 0 1 0 0 | ` `q` `(r ` (p))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_35` ` | q_00100011 | 0 0 1 0 0 0 1 1 | ` (q) `(p ` (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_49` ` | q_00110001 | 0 0 1 1 0 0 0 1 | ` (q) `(r ` (p))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_138 ` | q_10001010 | 1 0 0 0 1 0 1 0 | ` `r` `(p ` (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_162 ` | q_10100010 | 1 0 1 0 0 0 1 0 | ` `r` `(q ` (p))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_69` ` | q_01000101 | 0 1 0 0 0 1 0 1 | ` (r) `(p ` (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_81` ` | q_01010001 | 0 1 0 1 0 0 0 1 | ` (r) `(q ` (p))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_79` ` | q_01001111 | 0 1 0 0 1 1 1 1 | `( p` `(q ` (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_47` ` | q_00101111 | 0 0 1 0 1 1 1 1 | `( p` `(r ` (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_244 ` | q_11110100 | 1 1 1 1 0 1 0 0 | `((p) `(q ` (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_242 ` | q_11110010 | 1 1 1 1 0 0 1 0 | `((p) `(r ` (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_115 ` | q_01110011 | 0 1 1 1 0 0 1 1 | `( q` `(p ` (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_59` ` | q_00111011 | 0 0 1 1 1 0 1 1 | `( q` `(r ` (p))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_220 ` | q_11011100 | 1 1 0 1 1 1 0 0 | `((q) `(p ` (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_206 ` | q_11001110 | 1 1 0 0 1 1 1 0 | `((q) `(r ` (p))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_117 ` | q_01110101 | 0 1 1 1 0 1 0 1 | `( r` `(p ` (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_93` ` | q_01011101 | 0 1 0 1 1 1 0 1 | `( r` `(q ` (p))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_186 ` | q_10111010 | 1 0 1 1 1 0 1 0 | `((r) `(p ` (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_174 ` | q_10101110 | 1 0 1 0 1 1 1 0 | `((r) `(q ` (p))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o Table 7. Conjunctive Implications and Their Complements o---------o------------o-----------------o-------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_139 ` | q_10001011 | 1 0 0 0 1 0 1 1 | ` (p (q))(q (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_141 ` | q_10001101 | 1 0 0 0 1 1 0 1 | ` (p (r))(r (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_177 ` | q_10110001 | 1 0 1 1 0 0 0 1 | ` (q (r))(r (p))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_163 ` | q_10100011 | 1 0 1 0 0 0 1 1 | ` (q (p))(p (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_197 ` | q_11000101 | 1 1 0 0 0 1 0 1 | ` (r (p))(p (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_209 ` | q_11010001 | 1 1 0 1 0 0 0 1 | ` (r (q))(q (p))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_116 ` | q_01110100 | 0 1 1 1 0 1 0 0 | `((p (q))(q (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_114 ` | q_01110010 | 0 1 1 1 0 0 1 0 | `((p (r))(r (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_78` ` | q_01001110 | 0 1 0 0 1 1 1 0 | `((q (r))(r (p))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_92` ` | q_01011100 | 0 1 0 1 1 1 0 0 | `((q (p))(p (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_58` ` | q_00111010 | 0 0 1 1 1 0 1 0 | `((r (p))(p (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_46` ` | q_00101110 | 0 0 1 0 1 1 1 0 | `((r (q))(q (p))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o Table 8. More Variations on Difference and Equality o---------o------------o-----------------o-------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_96` ` | q_01100000 | 0 1 1 0 0 0 0 0 | ` `p ` (q , `r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_72` ` | q_01001000 | 0 1 0 0 1 0 0 0 | ` `q` `(p , `r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_40` ` | q_00101000 | 0 0 1 0 1 0 0 0 | ` `r` `(p , `q) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_144 ` | q_10010000 | 1 0 0 1 0 0 0 0 | ` `p` ((q , `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_132 ` | q_10000100 | 1 0 0 0 0 1 0 0 | ` `q` ((p , `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_130 ` | q_10000010 | 1 0 0 0 0 0 1 0 | ` `r` ((p , `q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_6 ` ` | q_00000110 | 0 0 0 0 0 1 1 0 | ` (p) `(q , `r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_18` ` | q_00010010 | 0 0 0 1 0 0 1 0 | ` (q) `(p , `r) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_20` ` | q_00010100 | 0 0 0 1 0 1 0 0 | ` (r) `(p , `q) ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_9 ` ` | q_00001001 | 0 0 0 0 1 0 0 1 | ` (p) ((q , `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_33` ` | q_00100001 | 0 0 1 0 0 0 0 1 | ` (q) ((p , `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_65` ` | q_01000001 | 0 1 0 0 0 0 0 1 | ` (r) ((p , `q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o=========o============o=================o===================o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_159 ` | q_10011111 | 1 0 0 1 1 1 1 1 | ` (p` `(q , `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_183 ` | q_10110111 | 1 0 1 1 0 1 1 1 | ` (q` `(p , `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_215 ` | q_11010111 | 1 1 0 1 0 1 1 1 | ` (r` `(p , `q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_111 ` | q_01101111 | 0 1 1 0 1 1 1 1 | ` (p` ((q , `r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_123 ` | q_01111011 | 0 1 1 1 1 0 1 1 | ` (q` ((p , `r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_125 ` | q_01111101 | 0 1 1 1 1 1 0 1 | ` (r` ((p , `q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_249 ` | q_11111001 | 1 1 1 1 1 0 0 1 | `((p) `(q , `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_237 ` | q_11101101 | 1 1 1 0 1 1 0 1 | `((q) `(p , `r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_235 ` | q_11101011 | 1 1 1 0 1 0 1 1 | `((r) `(p , `q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_246 ` | q_11110110 | 1 1 1 1 0 1 1 0 | `((p) ((q , `r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_222 ` | q_11011110 | 1 1 0 1 1 1 1 0 | `((q) ((p , `r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | | q_190 ` | q_10111110 | 1 0 1 1 1 1 1 0 | `((r) ((p , `q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o-------------------o Table 9. Conjunctive Differences and Equalities o---------o------------o-----------------o--------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` `| o---------o------------o-----------------o--------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` `| | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` `| | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` `| o---------o------------o-----------------o--------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | q_24` ` | q_00011000 | 0 0 0 1 1 0 0 0 | ` (p, q)` (p, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | q_36` ` | q_00100100 | 0 0 1 0 0 1 0 0 | ` (p, q)` (q, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | q_66` ` | q_01000010 | 0 1 0 0 0 0 1 0 | ` (p, r)` (q, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | q_129 ` | q_10000001 | 1 0 0 0 0 0 0 1 | `((p, q))((q, r)) `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| o---------o------------o-----------------o--------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | q_231 ` | q_11100111 | 1 1 1 0 0 1 1 1 | ( (p, q)` (p, r) ) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | q_219 ` | q_11011011 | 1 1 0 1 1 0 1 1 | ( (p, q)` (q, r) ) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | q_189 ` | q_10111101 | 1 0 1 1 1 1 0 1 | ( (p, r)` (q, r) ) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| | q_126 ` | q_01111110 | 0 1 1 1 1 1 1 0 | (((p, q))((q, r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `| o---------o------------o-----------------o--------------------o Table 10. Thematic Extensions: [q, r] -> [p, q, r] o---------o------------o-----------------o---------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_15` ` | q_00001111 | 0 0 0 0 1 1 1 1 | ((p , ` `( )` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_30` ` | q_00011110 | 0 0 0 1 1 1 1 0 | ((p , `(q) (r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_45` ` | q_00101101 | 0 0 1 0 1 1 0 1 | ((p , `(q)` r ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_60` ` | q_00111100 | 0 0 1 1 1 1 0 0 | ((p , `(q)` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_75` ` | q_01001011 | 0 1 0 0 1 0 1 1 | ((p , ` q `(r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_90` ` | q_01011010 | 0 1 0 1 1 0 1 0 | ((p , ` ` `(r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_105 ` | q_01101001 | 0 1 1 0 1 0 0 1 | ((p , `(q , r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_120 ` | q_01111000 | 0 1 1 1 1 0 0 0 | ((p , `(q ` r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_135 ` | q_10000111 | 1 0 0 0 0 1 1 1 | ((p , ` q ` r ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_150 ` | q_10010110 | 1 0 0 1 0 1 1 0 | ((p , ((q , r)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_165 ` | q_10100101 | 1 0 1 0 0 1 0 1 | ((p , ` ` ` r ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_180 ` | q_10110100 | 1 0 1 1 0 1 0 0 | ((p , `(q `(r)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_195 ` | q_11000011 | 1 1 0 0 0 0 1 1 | ((p , ` q ` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_210 ` | q_11010010 | 1 1 0 1 0 0 1 0 | ((p , ((q)` r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_225 ` | q_11100001 | 1 1 1 0 0 0 0 1 | ((p , ((q) (r)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_240 ` | q_11110000 | 1 1 1 1 0 0 0 0 | ((p , ` ` ` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o Table 11. Thematic Extensions: [p, r] -> [p, q, r] o---------o------------o-----------------o---------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_51` ` | q_00110011 | 0 0 1 1 0 0 1 1 | ((q , ` `( )` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_54` ` | q_00110110 | 0 0 1 1 0 1 1 0 | ((q , `(p) (r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_57` ` | q_00111001 | 0 0 1 1 1 0 0 1 | ((q , `(p)` r ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_60` ` | q_00111100 | 0 0 1 1 1 1 0 0 | ((q , `(p)` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_99` ` | q_01100011 | 0 1 1 0 0 0 1 1 | ((q , ` p `(r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_102 ` | q_01100110 | 0 1 1 0 0 1 1 0 | ((q , ` ` `(r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_105 ` | q_01101001 | 0 1 1 0 1 0 0 1 | ((q , `(p , r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_108 ` | q_01101100 | 0 1 1 0 1 1 0 0 | ((q , `(p ` r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_147 ` | q_10010011 | 1 0 0 1 0 0 1 1 | ((q , ` p ` r ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_150 ` | q_10010110 | 1 0 0 1 0 1 1 0 | ((q , ((p , r)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_153 ` | q_10011001 | 1 0 0 1 1 0 0 1 | ((q , ` ` ` r ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_156 ` | q_10011100 | 1 0 0 1 1 1 0 0 | ((q , `(p `(r)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_195 ` | q_11000011 | 1 1 0 0 0 0 1 1 | ((q , ` p ` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_198 ` | q_11000110 | 1 1 0 0 0 1 1 0 | ((q , ((p)` r)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_201 ` | q_00000000 | 1 1 0 0 1 0 0 1 | ((q , ((p) (r)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_204 ` | q_00000000 | 1 1 0 0 1 1 0 0 | ((q , ` ` ` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o Table 12. Thematic Extensions: [p, q] -> [p, q, r] o---------o------------o-----------------o---------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_85` ` | q_01010101 | 0 1 0 1 0 1 0 1 | ((r , ` `( )` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_86` ` | q_01010110 | 0 1 0 1 0 1 1 0 | ((r , `(p) (q)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_89` ` | q_01011001 | 0 1 0 1 1 0 0 1 | ((r , `(p)` q ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_90` ` | q_01011010 | 0 1 0 1 1 0 1 0 | ((r , `(p)` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_101 ` | q_01100101 | 0 1 1 0 0 1 0 1 | ((r , ` p `(q)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_102 ` | q_01100110 | 0 1 1 0 0 1 1 0 | ((r , ` ` `(q)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_105 ` | q_01101001 | 0 1 1 0 1 0 0 1 | ((r , `(p , q)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_106 ` | q_01101010 | 0 1 1 0 1 0 1 0 | ((r , `(p ` q)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_149 ` | q_10010101 | 1 0 0 1 0 1 0 1 | ((r , ` p ` q ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_150 ` | q_10010110 | 1 0 0 1 0 1 1 0 | ((r , ((p , q)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_153 ` | q_10011001 | 1 0 0 1 1 0 0 1 | ((r , ` ` ` q ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_154 ` | q_10011010 | 1 0 0 1 1 0 1 0 | ((r , `(p `(q)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_165 ` | q_10100101 | 1 0 1 0 0 1 0 1 | ((r , ` p ` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_166 ` | q_10100110 | 1 0 1 0 0 1 1 0 | ((r , ((p)` q)` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_169 ` | q_10101001 | 1 0 1 0 1 0 0 1 | ((r , ((p) (q)) ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_170 ` | q_10101010 | 1 0 1 0 1 0 1 0 | ((r , ` ` ` ` ` ))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o Table 13. Differences & Equalities Conjoined with Implications o---------o------------o-----------------o---------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_44` ` | q_00101100 | 0 0 1 0 1 1 0 0 | ` (p, q)` `(p (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_52` ` | q_00110100 | 0 0 1 1 0 1 0 0 | ` (p, q)` `((p) r)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_56` ` | q_00111000 | 0 0 1 1 1 0 0 0 | ` (p, q)` `(q (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_28` ` | q_00011100 | 0 0 0 1 1 1 0 0 | ` (p, q)` `((q) r)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_131 ` | q_10000011 | 1 0 0 0 0 0 1 1 | `((p, q)) `(p (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_193 ` | q_11000001 | 1 1 0 0 0 0 0 1 | `((p, q)) `((p) r)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_74` ` | q_01001010 | 0 1 0 0 1 0 1 0 | ` (p, r)` `(p (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_82` ` | q_01010010 | 0 1 0 1 0 0 1 0 | ` (p, r)` `((p) q)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_26` ` | q_00011010 | 0 0 0 1 1 0 1 0 | ` (p, r)` `(q (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_88` ` | q_01011000 | 0 1 0 1 1 0 0 0 | ` (p, r)` `((q) r)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_133 ` | q_10000101 | 1 0 0 0 0 1 0 1 | `((p, r)) `(p (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_161 ` | q_10100001 | 1 0 1 0 0 0 0 1 | `((p, r)) `((p) q)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_70` ` | q_01000110 | 0 1 0 0 0 1 1 0 | ` (q, r)` `(p (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_98` ` | q_01100010 | 0 1 1 0 0 0 1 0 | ` (q, r)` `((p) q)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_38` ` | q_00100110 | 0 0 1 0 0 1 1 0 | ` (q, r)` `(p (r))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_100 ` | q_01100100 | 0 1 1 0 0 1 0 0 | ` (q, r)` `((p) r)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_137 ` | q_10001001 | 1 0 0 0 1 0 0 1 | `((q, r)) `(p (q))` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_145 ` | q_10010001 | 1 0 0 1 0 0 0 1 | `((q, r)) `((p) q)` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_211 ` | q_11010011 | 1 1 0 1 0 0 1 1 | `((p, q)` `(p (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_203 ` | q_11001011 | 1 1 0 0 1 0 1 1 | `((p, q)` `((p) r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_199 ` | q_11000111 | 1 1 0 0 0 1 1 1 | `((p, q)` `(q (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_227 ` | q_11100011 | 1 1 1 0 0 0 1 1 | `((p, q)` `((q) r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_124 ` | q_01111100 | 0 1 1 1 1 1 0 0 | (((p, q)) `(p (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_62` ` | q_00111110 | 0 0 1 1 1 1 1 0 | (((p, q)) `((p) r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_181 ` | q_10110101 | 1 0 1 1 0 1 0 1 | `((p, r)` `(p (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_173 ` | q_10101101 | 1 0 1 0 1 1 0 1 | `((p, r)` `((p) q)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_229 ` | q_11100101 | 1 1 1 0 0 1 0 1 | `((p, r)` `(q (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_167 ` | q_10100111 | 1 0 1 0 0 1 1 1 | `((p, r)` `((q) r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_122 ` | q_01111010 | 0 1 1 1 1 0 1 0 | (((p, r)) `(p (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_94` ` | q_01011110 | 0 1 0 1 1 1 1 0 | (((p, r)) `((p) q)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_185 ` | q_10111001 | 1 0 1 1 1 0 0 1 | `((q, r)` `(p (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_157 ` | q_10011101 | 1 0 0 1 1 1 0 1 | `((q, r)` `((p) q)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_217 ` | q_11011001 | 1 1 0 1 1 0 0 1 | `((q, r)` `(p (r))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_155 ` | q_10011011 | 1 0 0 1 1 0 1 1 | `((q, r)` `((p) r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_118 ` | q_01110110 | 0 1 1 1 0 1 1 0 | (((q, r)) `(p (q))) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | | q_110 ` | q_01101110 | 0 1 1 0 1 1 1 0 | (((q, r)) `((p) q)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------o Table 14. Proximal Propositions o---------o------------o-----------------o---------------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_23` ` | q_00010111 | 0 0 0 1 0 1 1 1 | (p)(q)(r) + ((p),(q),(r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_43` ` | q_00101011 | 0 0 1 0 1 0 1 1 | (p)(q) r `+ ((p),(q), r ) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_77` ` | q_01001101 | 0 1 0 0 1 1 0 1 | (p) q (r) + ((p), q ,(r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_142 ` | q_10001110 | 1 0 0 0 1 1 1 0 | (p) q `r `+ ((p), q , r ) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_113 ` | q_01110001 | 0 1 1 1 0 0 0 1 | `p (q)(r) + ( p ,(q),(r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_178 ` | q_10110010 | 1 0 1 1 0 0 1 0 | `p (q) r `+ ( p ,(q), r ) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_212 ` | q_11010100 | 1 1 0 1 0 1 0 0 | `p `q (r) + ( p , q ,(r)) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_232 ` | q_11101000 | 1 1 1 0 1 0 0 0 | `p `q `r `+ ( p , q , r ) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/```````````````\````````````````| |```````````````/`````````````````\```````````````| |``````````````/```````````````````\``````````````| |`````````````/`````````````````````\`````````````| |````````````o```````````````````````o````````````| |````````````|```````````P```````````|````````````| |````````````|```````````````````````|````````````| |````````````|```````````````````````|````````````| |````````o---o---------o```o---------o---o````````| |```````/`````\ \`/ /`````\```````| |``````/```````\ o /```````\``````| |`````/`````````\ / \ /`````````\`````| |````/```````````\ / \ /```````````\````| |```o```````````` o---o-----o---o`````````````o```| |```|`````````````````| |`````````````````|```| |```|`````````````````| |`````````````````|```| |```|``````` Q ```````| |``````` R ```````|```| |```o`````````````````o o`````````````````o```| |````\`````````````````\ /`````````````````/````| |`````\`````````````````\ /`````````````````/`````| |``````\`````````````````o`````````````````/``````| |```````\```````````````/`\```````````````/```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_23. (p)(q)(r) + ((p),(q),(r)) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | / \`````````\ /`````````/ \ | | / \`````````o`````````/ \ | | / \```````/`\```````/ \ | | / \`````/```\`````/ \ | | o o---o-----o---o o | | | |`````| | | | | |`````| | | | | Q |`````| R | | | o o`````o o | | \ \```/ / | | \ \`/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_232. p q r + (p, q, r) Table 15. Differences and Equalities between Simples and Boundaries o---------o------------o-----------------o---------------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_152 ` | q_10011000 | 1 0 0 1 1 0 0 0 | `p + ( p ,` q , `r )` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_164 ` | q_10100100 | 1 0 1 0 0 1 0 0 | `q + ( p ,` q , `r )` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_194 ` | q_11000010 | 1 1 0 0 0 0 1 0 | `r + ( p ,` q , `r )` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_230 ` | q_11100110 | 1 1 1 0 0 1 1 0 | `p + ((p),`(q), (r))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_218 ` | q_11011010 | 1 1 0 1 1 0 1 0 | `q + ((p),`(q), (r))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_188 ` | q_10111100 | 1 0 1 1 1 1 0 0 | `r + ((p),`(q), (r))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_103 ` | q_01100111 | 0 1 1 0 0 1 1 1 | `p = ( p ,` q , `r )` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_91` ` | q_01011011 | 0 1 0 1 1 0 1 1 | `q = ( p ,` q , `r )` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_61` ` | q_00111101 | 0 0 1 1 1 1 0 1 | `r = ( p ,` q , `r )` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_25` ` | q_00011001 | 0 0 0 1 1 0 0 1 | `p = ((p),`(q), (r))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_37` ` | q_00100101 | 0 0 1 0 0 1 0 1 | `q = ((p),`(q), (r))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_67` ` | q_01000011 | 0 1 0 0 0 0 1 1 | `r = ((p),`(q), (r))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o o-------------------------------------------------o | | | | | o-------------o | | /```````````````\ | | /`````````````````\ | | /```````````````````\ | | /`````````````````````\ | | o```````````````````````o | | |`````````` P ``````````| | | |```````````````````````| | | |```````````````````````| | | o---o---------o```o---------o---o | | / \ \`/ / \ | | / \ o / \ | | / \ /`\ / \ | | / \ /```\ / \ | | o o---o-----o---o o | | | |`````| | | | | |`````| | | | | Q |`````| R | | | o o`````o o | | \ \```/ / | | \ \`/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_152. p + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | /`````\ \ /`````````/ \ | | /```````\ o`````````/ \ | | /`````````\ /`\```````/ \ | | /```````````\ /```\`````/ \ | | o`````````````o---o-----o---o o | | |`````````````````| | | | | |`````````````````| | | | | |``````` Q ```````| | R | | | o`````````````````o o o | | \`````````````````\ / / | | \`````````````````\ / / | | \`````````````````o / | | \```````````````/ \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_164. q + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | / \`````````\ / /`````\ | | / \`````````o /```````\ | | / \```````/`\ /`````````\ | | / \`````/```\ /```````````\ | | o o---o-----o---o`````````````o | | | | |`````````````````| | | | | |`````````````````| | | | Q | |``````` R ```````| | | o o o`````````````````o | | \ \ /`````````````````/ | | \ \ /`````````````````/ | | \ o`````````````````/ | | \ / \```````````````/ | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_194. r + (p, q, r) o-------------------------------------------------o |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| |`````````````````o-------------o`````````````````| |````````````````/ \````````````````| |```````````````/ \```````````````| |``````````````/ \``````````````| |`````````````/ \`````````````| |````````````o o````````````| |````````````| P |````````````| |````````````| |````````````| |````````````| |````````````| |````````o---o---------o o---------o---o````````| |```````/ \ \ / / \```````| |``````/ \ o / \``````| |`````/ \ /`\ / \`````| |````/ \ /```\ / \````| |```o o---o-----o---o o```| |```| | | |```| |```| | | |```| |```| Q | | R |```| |```o o o o```| |````\ \ / /````| |`````\ \ / /`````| |``````\ o /``````| |```````\ /`\ /```````| |````````o-------------o```o-------------o````````| |`````````````````````````````````````````````````| |`````````````````````````````````````````````````| o-------------------------------------------------o q_129. ((p, q))((q, r)) Table 16. Paisley Propositions o---------o------------o-----------------o---------------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_216 ` | q_11011000 | 1 1 0 1 1 0 0 0 | ` (p, q)(p, r)` + `p q` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_184 ` | q_10111000 | 1 0 1 1 1 0 0 0 | ` (p, q)(p, r)` + `p r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_228 ` | q_11100100 | 1 1 1 0 0 1 0 0 | ` (p, q)(q, r)` + `p q` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_172 ` | q_10101100 | 1 0 1 0 1 1 0 0 | ` (p, q)(q, r)` + `q r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_226 ` | q_11100010 | 1 1 1 0 0 0 1 0 | ` (p, r)(q, r)` + `p r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_202 ` | q_11001010 | 1 1 0 0 1 0 1 0 | ` (p, r)(q, r)` + `q r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_39` ` | q_00100111 | 0 0 1 0 0 1 1 1 | ` (p, q)(p, r)` = `p q` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_71` ` | q_01000111 | 0 1 0 0 0 1 1 1 | ` (p, q)(p, r)` = `p r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_27` ` | q_00011011 | 0 0 0 1 1 0 1 1 | ` (p, q)(q, r)` = `p q` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_83` ` | q_01010011 | 0 1 0 1 0 0 1 1 | ` (p, q)(q, r)` = `q r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_29` ` | q_00011101 | 0 0 0 1 1 1 0 1 | ` (p, r)(q, r)` = `p r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_53` ` | q_00110101 | 0 0 1 1 0 1 0 1 | ` (p, r)(q, r)` = `q r` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o Table 17. Paisley Propositions o---------o------------o-----------------o------------------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` ` ` ` ` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` ` ` ` ` `| o---------o------------o-----------------o------------------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| o---------o------------o-----------------o------------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_216 ` | q_11011000 | 1 1 0 1 1 0 0 0 | ` p + pq + pqr + (p, q, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_184 ` | q_10111000 | 1 0 1 1 1 0 0 0 | ` p + pr + pqr + (p, q, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_228 ` | q_11100100 | 1 1 1 0 0 1 0 0 | ` q + pq + pqr + (p, q, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_172 ` | q_10101100 | 1 0 1 0 1 1 0 0 | ` q + qr + pqr + (p, q, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_226 ` | q_11100010 | 1 1 1 0 0 0 1 0 | ` r + pr + pqr + (p, q, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_202 ` | q_11001010 | 1 1 0 0 1 0 1 0 | ` r + qr + pqr + (p, q, r)` `| | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| o---------o------------o-----------------o------------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_39` ` | q_00100111 | 0 0 1 0 0 1 1 1 | 1 + p + pq + pqr + (p, q, r) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_71` ` | q_01000111 | 0 1 0 0 0 1 1 1 | 1 + p + pr + pqr + (p, q, r) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_27` ` | q_00011011 | 0 0 0 1 1 0 1 1 | 1 + q + pq + pqr + (p, q, r) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_83` ` | q_01010011 | 0 1 0 1 0 0 1 1 | 1 + q + qr + pqr + (p, q, r) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_29` ` | q_00011101 | 0 0 0 1 1 1 0 1 | 1 + r + pr + pqr + (p, q, r) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| | q_53` ` | q_00110101 | 0 0 1 1 0 1 0 1 | 1 + r + qr + pqr + (p, q, r) | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| o---------o------------o-----------------o------------------------------o o-------------------------------------------------o | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` o-------------o ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` `/%%%%%%%%%%%%%%%\` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` /%%%%%%%%%%%%%%%%%\ ` ` ` ` ` ` ` | | ` ` ` ` ` ` `/%%%%%%%%%%%%%%%%%%%\` ` ` ` ` ` ` | | ` ` ` ` ` ` /%%%%%%%%%%%%%%%%%%%%%\ ` ` ` ` ` ` | | ` ` ` ` ` `o%%%%%%%%%%%%%%%%%%%%%%%o` ` ` ` ` ` | | ` ` ` ` ` `|%%%%%%%%%% P %%%%%%%%%%|` ` ` ` ` ` | | ` ` ` ` ` `|%%%%%%%%%%%%%%%%%%%%%%%|` ` ` ` ` ` | | ` ` ` ` ` `|%%%%%%%%%%%%%%%%%%%%%%%|` ` ` ` ` ` | | ` ` ` `o---o---------o%%%o---------o---o` ` ` ` | | ` ` ` / ` ` \%%%%%%%%%\%/ ` ` ` ` / ` ` \ ` ` ` | | ` ` `/` ` ` `\%%%%%%%%%o` ` ` ` `/` ` ` `\` ` ` | | ` ` / ` ` ` ` \%%%%%%%/%\ ` ` ` / ` ` ` ` \ ` ` | | ` `/` ` ` ` ` `\%%%%%/%%%\` ` `/` ` ` ` ` `\` ` | | ` o ` ` ` ` ` ` o---o-----o---o ` ` ` ` ` ` o ` | | ` | ` ` ` ` ` ` ` ` |%%%%%| ` ` ` ` ` ` ` ` | ` | | ` | ` ` ` ` ` ` ` ` |%%%%%| ` ` ` ` ` ` ` ` | ` | | ` | ` ` ` `Q` ` ` ` |%%%%%| ` ` ` `R` ` ` ` | ` | | ` o ` ` ` ` ` ` ` ` o%%%%%o ` ` ` ` ` ` ` ` o ` | | ` `\` ` ` ` ` ` ` ` `\%%%/` ` ` ` ` ` ` ` `/` ` | | ` ` \ ` ` ` ` ` ` ` ` \%/ ` ` ` ` ` ` ` ` / ` ` | | ` ` `\` ` ` ` ` ` ` ` `o` ` ` ` ` ` ` ` `/` ` ` | | ` ` ` \ ` ` ` ` ` ` ` /`\ ` ` ` ` ` ` ` / ` ` ` | | ` ` ` `o-------------o` `o-------------o` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | o-------------------------------------------------o q_216. p + p q + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | /```````````````\ | | /`````````````````\ | | /```````````````````\ | | /`````````````````````\ | | o```````````````````````o | | |`````````` P ``````````| | | |```````````````````````| | | |```````````````````````| | | o---o---------o```o---------o---o | | / \ \`/ / \ | | / \ o / \ | | / \ / \ / \ | | / \ / \ / \ | | o o---o-----o---o o | | | |`````| | | | | |`````| | | | | Q |`````| R | | | o o`````o o | | \ \```/ / | | \ \`/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_24. (p, q)(p, r) q_24. p + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | /```````````````\ | | /`````````````````\ | | /```````````````````\ | | /`````````````````````\ | | o```````````````````````o | | |`````````` P ``````````| | | |```````````````````````| | | |```````````````````````| | | o---o---------o```o---------o---o | | / \`````````\`/ / \ | | / \`````````o / \ | | / \```````/`\ / \ | | / \`````/```\ / \ | | o o---o-----o---o o | | | |`````| | | | | |`````| | | | | Q |`````| R | | | o o`````o o | | \ \```/ / | | \ \`/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_216. (p, q)(p, r) + p q q_216. p + p q + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | /```````````````\ | | /`````````````````\ | | /```````````````````\ | | /`````````````````````\ | | o```````````````````````o | | |`````````` P ``````````| | | |```````````````````````| | | |```````````````````````| | | o---o---------o```o---------o---o | | / \ \`/`````````/ \ | | / \ o`````````/ \ | | / \ /`\```````/ \ | | / \ /```\`````/ \ | | o o---o-----o---o o | | | |`````| | | | | |`````| | | | | Q |`````| R | | | o o`````o o | | \ \```/ / | | \ \`/ / | | \ o / | | \ / \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_184. (p, q)(p, r) + p r q_184. p + p r + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | /`````\ \ /`````````/ \ | | /```````\ o`````````/ \ | | /`````````\ / \```````/ \ | | /```````````\ / \`````/ \ | | o`````````````o---o-----o---o o | | |`````````````````| | | | | |`````````````````| | | | | |``````` Q ```````| | R | | | o`````````````````o o o | | \`````````````````\ / / | | \`````````````````\ / / | | \`````````````````o / | | \```````````````/ \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_36. (p, q)(q, r) q_36. q + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | /`````\`````````\ /`````````/ \ | | /```````\`````````o`````````/ \ | | /`````````\```````/`\```````/ \ | | /```````````\`````/```\`````/ \ | | o`````````````o---o-----o---o o | | |`````````````````| | | | | |`````````````````| | | | | |``````` Q ```````| | R | | | o`````````````````o o o | | \`````````````````\ / / | | \`````````````````\ / / | | \`````````````````o / | | \```````````````/ \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_228. (p, q)(q, r) + p q q_228. q + p q + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | /`````\ \ /`````````/ \ | | /```````\ o`````````/ \ | | /`````````\ /`\```````/ \ | | /```````````\ /```\`````/ \ | | o`````````````o---o-----o---o o | | |`````````````````|`````| | | | |`````````````````|`````| | | | |``````` Q ```````|`````| R | | | o`````````````````o`````o o | | \`````````````````\```/ / | | \`````````````````\`/ / | | \`````````````````o / | | \```````````````/ \ / | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_172. (p, q)(q, r) + q r q_172. q + q r + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | / \`````````\ / /`````\ | | / \`````````o /```````\ | | / \```````/ \ /`````````\ | | / \`````/ \ /```````````\ | | o o---o-----o---o`````````````o | | | | |`````````````````| | | | | |`````````````````| | | | Q | |``````` R ```````| | | o o o`````````````````o | | \ \ /`````````````````/ | | \ \ /`````````````````/ | | \ o`````````````````/ | | \ / \```````````````/ | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_66. (p, r)(q, r) q_66. r + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | / \`````````\ /`````````/`````\ | | / \`````````o`````````/```````\ | | / \```````/`\```````/`````````\ | | / \`````/```\`````/```````````\ | | o o---o-----o---o`````````````o | | | | |`````````````````| | | | | |`````````````````| | | | Q | |``````` R ```````| | | o o o`````````````````o | | \ \ /`````````````````/ | | \ \ /`````````````````/ | | \ o`````````````````/ | | \ / \```````````````/ | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_226. (p, r)(q, r) + p r q_266. r + p r + p q r + (p, q, r) o-------------------------------------------------o | | | | | o-------------o | | / \ | | / \ | | / \ | | / \ | | o o | | | P | | | | | | | | | | | o---o---------o o---------o---o | | / \`````````\ / /`````\ | | / \`````````o /```````\ | | / \```````/`\ /`````````\ | | / \`````/```\ /```````````\ | | o o---o-----o---o`````````````o | | | |`````|`````````````````| | | | |`````|`````````````````| | | | Q |`````|``````` R ```````| | | o o`````o`````````````````o | | \ \```/`````````````````/ | | \ \`/`````````````````/ | | \ o`````````````````/ | | \ / \```````````````/ | | o-------------o o-------------o | | | | | o-------------------------------------------------o q_202. (p, r)(q, r) + q r q_202. r + q r + p q r + (p, q, r) Table 18. Desultory Junctions and Their Complements o---------o------------o-----------------o---------------------------o | L_1 ` ` | L_2 ` ` ` `| L_3 ` ` ` ` ` ` | L_4 ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | Decimal | Binary` ` `| Vector` ` ` ` ` | Cactus` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` `p : 1 1 1 1 0 0 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `q : 1 1 0 0 1 1 0 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | | ` ` ` ` | ` ` ` ` `r : 1 0 1 0 1 0 1 0 | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_224 ` | q_11100000 | 1 1 1 0 0 0 0 0 | ` ` ` `p` `((q)(r)) ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_200 ` | q_11001000 | 1 1 0 0 1 0 0 0 | ` ` ` `q` `((p)(r)) ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_168 ` | q_10101000 | 1 0 1 0 1 0 0 0 | ` ` ` `r` `((p)(q)) ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_14` ` | q_00001110 | 0 0 0 0 1 1 1 0 | ` ` ` (p) `((q)(r)) ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_50` ` | q_00110010 | 0 0 1 1 0 0 1 0 | ` ` ` (q) `((p)(r)) ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_84` ` | q_01010100 | 0 1 0 1 0 1 0 0 | ` ` ` (r) `((p)(q)) ` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_31` ` | q_00011111 | 0 0 0 1 1 1 1 1 | ` ` ` (p` `((q)(r)))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_55` ` | q_00110111 | 0 0 1 1 0 1 1 1 | ` ` ` (q` `((p)(r)))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_87` ` | q_01010111 | 0 1 0 1 0 1 1 1 | ` ` ` (r` `((p)(q)))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_241 ` | q_11110001 | 1 1 1 1 0 0 0 1 | ` ` `((p) `((q)(r)))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_205 ` | q_11001101 | 1 1 0 0 1 1 0 1 | ` ` `((q) `((p)(r)))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | | q_171 ` | q_10101011 | 1 0 1 0 1 0 1 1 | ` ` `((r) `((p)(q)))` ` ` | | ` ` ` ` | ` ` ` ` ` `| ` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` | o---------o------------o-----------------o---------------------------o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules -- Discussion o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Discussion Note 1 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o Just by way of incidental kibitzing, I notice that Rule 73 has the form of a "genus and species" or "pie-chart" proposition, where q is the genus and p and r are the species. The cactus expression and cactus graph are as follows: o-------------------o | ` ` ` ` ` ` ` ` ` | | ` ` ` ` ` ` ` ` ` | | ` ` ` p ` r ` ` ` | | ` ` ` o ` o ` ` ` | | ` ` ` | q | ` ` ` | | ` ` ` o-o-o ` ` ` | | ` ` ` `\ /` ` ` ` | | ` ` ` ` @ ` ` ` ` | o-------------------o | ` ((p), q ,(r)) ` | o-------------------o | ` ` ` q_73` ` ` ` | o-------------------o See the discussion in and around Cactus Rules Note 5. http://forum.wolframscience.com/showthread.php?s=&postid=830#post830 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Discussion Note 2 o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o CR. Cactus Rules Ontology List 01. http://suo.ieee.org/ontology/msg05486.html 02. http://suo.ieee.org/ontology/msg05487.html 03. http://suo.ieee.org/ontology/msg05488.html 04. http://suo.ieee.org/ontology/msg05489.html 05. http://suo.ieee.org/ontology/msg05490.html 06. http://suo.ieee.org/ontology/msg05491.html 07. http://suo.ieee.org/ontology/msg05492.html 08. http://suo.ieee.org/ontology/msg05493.html 09. http://suo.ieee.org/ontology/msg05494.html 10. http://suo.ieee.org/ontology/msg05495.html 11. http://suo.ieee.org/ontology/msg05496.html 12. http://suo.ieee.org/ontology/msg05498.html 13. http://suo.ieee.org/ontology/msg05499.html 14. http://suo.ieee.org/ontology/msg05500.html 15. http://suo.ieee.org/ontology/msg05501.html 16. http://suo.ieee.org/ontology/msg05502.html 17. http://suo.ieee.org/ontology/msg05503.html 18. http://suo.ieee.org/ontology/msg05507.html 19. http://suo.ieee.org/ontology/msg05508.html 20. http://suo.ieee.org/ontology/msg05509.html 21. http://suo.ieee.org/ontology/msg05510.html 22. http://suo.ieee.org/ontology/msg05511.html 23. http://suo.ieee.org/ontology/msg05512.html 24. http://suo.ieee.org/ontology/msg05518.html 25. Inquiry List 01. http://stderr.org/pipermail/inquiry/2004-March/001265.html 02. http://stderr.org/pipermail/inquiry/2004-March/001266.html 03. http://stderr.org/pipermail/inquiry/2004-March/001267.html 04. http://stderr.org/pipermail/inquiry/2004-March/001268.html 05. http://stderr.org/pipermail/inquiry/2004-March/001269.html 06. http://stderr.org/pipermail/inquiry/2004-March/001270.html 07. http://stderr.org/pipermail/inquiry/2004-March/001271.html 08. http://stderr.org/pipermail/inquiry/2004-March/001272.html 09. http://stderr.org/pipermail/inquiry/2004-March/001273.html 10. http://stderr.org/pipermail/inquiry/2004-March/001274.html 11. http://stderr.org/pipermail/inquiry/2004-March/001275.html 12. http://stderr.org/pipermail/inquiry/2004-March/001277.html 13. http://stderr.org/pipermail/inquiry/2004-March/001278.html 14. http://stderr.org/pipermail/inquiry/2004-March/001279.html 15. http://stderr.org/pipermail/inquiry/2004-March/001280.html 16. http://stderr.org/pipermail/inquiry/2004-March/001281.html 17. http://stderr.org/pipermail/inquiry/2004-March/001290.html 18. http://stderr.org/pipermail/inquiry/2004-April/001305.html 19. http://stderr.org/pipermail/inquiry/2004-April/001306.html 20. http://stderr.org/pipermail/inquiry/2004-April/001307.html 21. http://stderr.org/pipermail/inquiry/2004-April/001308.html 22. http://stderr.org/pipermail/inquiry/2004-April/001312.html 23. http://stderr.org/pipermail/inquiry/2004-April/001314.html 24. http://stderr.org/pipermail/inquiry/2004-April/001322.html 25. NKS Forum 00. http://forum.wolframscience.com/showthread.php?s=&threadid=256 01. http://forum.wolframscience.com/showthread.php?s=&postid=810#post810 02. http://forum.wolframscience.com/showthread.php?s=&postid=818#post818 03. http://forum.wolframscience.com/showthread.php?s=&postid=826#post826 04. http://forum.wolframscience.com/showthread.php?s=&postid=829#post829 05. http://forum.wolframscience.com/showthread.php?s=&postid=830#post830 06. http://forum.wolframscience.com/showthread.php?s=&postid=831#post831 07. http://forum.wolframscience.com/showthread.php?s=&postid=832#post832 08. http://forum.wolframscience.com/showthread.php?s=&postid=834#post834 09. http://forum.wolframscience.com/showthread.php?s=&postid=835#post835 10. http://forum.wolframscience.com/showthread.php?s=&postid=838#post838 11. http://forum.wolframscience.com/showthread.php?s=&postid=840#post840 12. http://forum.wolframscience.com/showthread.php?s=&postid=841#post841 13. http://forum.wolframscience.com/showthread.php?s=&postid=842#post842 14. http://forum.wolframscience.com/showthread.php?s=&postid=843#post843 15. http://forum.wolframscience.com/showthread.php?s=&postid=844#post844 16. http://forum.wolframscience.com/showthread.php?s=&postid=845#post845 17. http://forum.wolframscience.com/showthread.php?s=&postid=854#post854 18. http://forum.wolframscience.com/showthread.php?s=&postid=891#post891 19. http://forum.wolframscience.com/showthread.php?s=&postid=894#post894 20. http://forum.wolframscience.com/showthread.php?s=&postid=897#post897 21. http://forum.wolframscience.com/showthread.php?s=&postid=898#post898 22. http://forum.wolframscience.com/showthread.php?s=&postid=902#post902 23. http://forum.wolframscience.com/showthread.php?s=&postid=909#post909 24a. http://forum.wolframscience.com/showthread.php?s=&postid=927#post927 24b. http://forum.wolframscience.com/showthread.php?s=&postid=928#post928 24c. http://forum.wolframscience.com/showthread.php?s=&postid=929#post929 24d. http://forum.wolframscience.com/showthread.php?s=&postid=933#post933 24e. http://forum.wolframscience.com/showthread.php?s=&postid=934#post934 25. CR. Cactus Rules -- Discussion 01. http://forum.wolframscience.com/showthread.php?s=&postid=901#post901 02. o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o