MyWikiBiz, Author Your Legacy — Friday December 19, 2025
Jump to navigationJump to search
162 bytes added
, 20:42, 1 May 2009
| Line 129: |
Line 129: |
| | | | |
| | Interpreting the formula <math>\mathit{l}^\mathrm{w}\!</math> as <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> highlights the form of the converse implication inherent in it, and this in turn reveals the analogy between implication and involution that accounts for the aptness of the latter name. | | Interpreting the formula <math>\mathit{l}^\mathrm{w}\!</math> as <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> highlights the form of the converse implication inherent in it, and this in turn reveals the analogy between implication and involution that accounts for the aptness of the latter name. |
| | + | |
| | + | The operations of the forms <math>x^y = z\!</math> and <math>(x\!\Leftarrow\!y) = z</math> for <math>x, y, z \in \mathbb{B} = \{ 0, 1 \}</math> are tabulated below: |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| | | | | | |
| | <math> | | <math> |
| − | \begin{bmatrix} | + | \begin{matrix} |
| | 0^0 & = & 1 | | 0^0 & = & 1 |
| | \\ | | \\ |
| Line 141: |
Line 143: |
| | \\ | | \\ |
| | 1^1 & = & 1 | | 1^1 & = & 1 |
| − | \end{bmatrix} | + | \end{matrix} |
| | \qquad\qquad\qquad | | \qquad\qquad\qquad |
| − | \begin{bmatrix} | + | \begin{matrix} |
| | 0\!\Leftarrow\!0 & = & 1 | | 0\!\Leftarrow\!0 & = & 1 |
| | \\ | | \\ |
| Line 151: |
Line 153: |
| | \\ | | \\ |
| | 1\!\Leftarrow\!1 & = & 1 | | 1\!\Leftarrow\!1 & = & 1 |
| − | \end{bmatrix} | + | \end{matrix} |
| | </math> | | </math> |
| | |} | | |} |