| Line 313: |
Line 313: |
| | | | |
| | {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
| − | | | + | | align="center" | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| | \operatorname{E}f(p, q, \operatorname{d}p, \operatorname{d}q) | | \operatorname{E}f(p, q, \operatorname{d}p, \operatorname{d}q) |
| Line 323: |
Line 323: |
| | |} | | |} |
| | | | |
| | + | In the example <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is computed as follows: |
| | + | |
| | + | {| align="center" cellpadding="6" width="90%" |
| | + | | align="center" | |
| | + | <math>\begin{matrix} |
| | + | \operatorname{E}f(p, q, \operatorname{d}p, \operatorname{d}q) |
| | + | & = & |
| | + | (p + \operatorname{d}p)(q + \operatorname{d}q) |
| | + | & = & |
| | + | \texttt{(} p, \operatorname{d}p \texttt{)(} q, \operatorname{d}q \texttt{)} |
| | + | \end{matrix}</math> |
| | + | |- |
| | + | | align="center" | |
| | <pre> | | <pre> |
| − | In the example f<p, q> = pq, the enlargement Ef is given by:
| |
| − |
| |
| − | Ef<p, q, dp, dq>
| |
| − |
| |
| − | = [p + dp][q + dq]
| |
| − |
| |
| − | = (p, dp)(q, dq)
| |
| − |
| |
| | o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | | |
| Line 344: |
Line 349: |
| | | Ef = (p, dp) (q, dq) | | | | Ef = (p, dp) (q, dq) | |
| | o-------------------------------------------------o | | o-------------------------------------------------o |
| | + | </pre> |
| | + | |} |
| | | | |
| | + | <pre> |
| | Given the proposition f<p, q> over X = !P! x !Q!, the | | Given the proposition f<p, q> over X = !P! x !Q!, the |
| | (first order) "difference" of f is the proposition Df | | (first order) "difference" of f is the proposition Df |