MyWikiBiz, Author Your Legacy — Friday November 21, 2025
Jump to navigationJump to search
339 bytes added
, 20:31, 12 June 2009
| Line 309: |
Line 309: |
| | ==Note 3== | | ==Note 3== |
| | | | |
| − | <pre>
| + | Given the proposition <math>f(p, q)\!</math> over the space <math>X = P \times Q,</math> the ''(first order) enlargement'' of <math>f\!</math> is the proposition <math>\operatorname{E}f</math> over the differential extension <math>\operatorname{E}X</math> that is defined by the |
| − | Given the proposition f<p, q> over the space X = !P! x !Q!, | |
| − | the (first order) "enlargement" of f is the proposition Ef | |
| − | over the differential extension EX that is defined by the | |
| | following formula: | | following formula: |
| | | | |
| − | Ef<p, q, dp, dq>
| + | {| align="center" cellpadding="6" width="90%" |
| − | | + | | |
| − | = f<p + dp, q + dq>
| + | <math>\begin{matrix} |
| − | | + | \operatorname{E}f(p, q, \operatorname{d}p, \operatorname{d}q) |
| − | = f<(p, dp), (q, dq)>
| + | & = & |
| | + | f(p + \operatorname{d}p,~ q + \operatorname{d}q) |
| | + | & = & |
| | + | f( \texttt{(} p, \operatorname{d}p \texttt{)},~ \texttt{(} q, \operatorname{d}q \texttt{)} ) |
| | + | \end{matrix}</math> |
| | + | |} |
| | | | |
| | + | <pre> |
| | In the example f<p, q> = pq, the enlargement Ef is given by: | | In the example f<p, q> = pq, the enlargement Ef is given by: |
| | | | |