Changes

MyWikiBiz, Author Your Legacy — Thursday January 16, 2025
Jump to navigationJump to search
→‎Note 3: markup
Line 352: Line 352:  
|}
 
|}
   −
<pre>
+
Given the proposition <math>f(p, q)\!</math> over <math>X = P \times Q,</math> the ''(first order) difference'' of <math>f\!</math> is the proposition <math>\operatorname{D}f</math> over <math>\operatorname{E}X</math> that is defined by the formula <math>\operatorname{D}f = \operatorname{E}f - f,</math> or, written out in full:
Given the proposition f<p, q> over X = !P! x !Q!, the
  −
(first order) "difference" of f is the proposition Df
  −
over EX that is defined by the formula Df = Ef - f, or,
  −
written out in full:
     −
  Df<p, q, dp, dq>
+
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<math>\begin{matrix}
 +
\operatorname{D}f(p, q, \operatorname{d}p, \operatorname{d}q)
 +
& = &
 +
f(p + \operatorname{d}p,~ q + \operatorname{d}q) - f(p, q)
 +
& = &
 +
\texttt{(} f( \texttt{(} p, \operatorname{d}p \texttt{)},~ \texttt{(} q, \operatorname{d}q \texttt{)} ),~ f(p, q) \texttt{)}
 +
\end{matrix}</math>
 +
|}
   −
  =  f<p + dp, q + dq> - f<p, q>
+
In the example <math>f(p, q) = pq,\!</math> the difference <math>\operatorname{D}f</math> is computed as follows:
 
  −
  =  (f<(p, dp), (q, dq)>, f<p, q>)
  −
 
  −
In the example f<p, q> = pq, the difference Df is given by:
  −
 
  −
  Df<p, q, dp, dq>
  −
 
  −
  =  [p + dp][q + dq] - pq
  −
 
  −
  =  ((p, dp)(q, dq), pq)
      +
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<math>\begin{matrix}
 +
\operatorname{D}f(p, q, \operatorname{d}p, \operatorname{d}q)
 +
& = &
 +
(p + \operatorname{d}p)(q + \operatorname{d}q) - pq
 +
& = &
 +
\texttt{((} p, \operatorname{d}p \texttt{)(} q, \operatorname{d}q \texttt{)}, pq \texttt{)}
 +
\end{matrix}</math>
 +
|-
 +
| align="center" |
 +
<pre>
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 391: Line 398:  
| Df =          ((p, dp)(q, dq), pq)            |
 
| Df =          ((p, dp)(q, dq), pq)            |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 +
</pre>
 +
|}
    +
<pre>
 
We did not yet go through the trouble to interpret this (first order)
 
We did not yet go through the trouble to interpret this (first order)
 
"difference of conjunction" fully, but were happy simply to evaluate
 
"difference of conjunction" fully, but were happy simply to evaluate
12,080

edits

Navigation menu