Line 5,580: |
Line 5,580: |
| To establish a convenient reference point for further discussion, Table 49 summarizes the operator actions that have been computed for the form of conjunction, as exemplified by the proposition ''J''. | | To establish a convenient reference point for further discussion, Table 49 summarizes the operator actions that have been computed for the form of conjunction, as exemplified by the proposition ''J''. |
| | | |
− | <pre> | + | <font face="courier new"> |
− | Table 49. Computation Summary for J | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | o-------------------------------------------------------------------------------o
| + | |+ Table 49. Computation Summary for ''J'' |
− | | | | + | | |
− | | !e!J = uv . 1 + u(v) . 0 + (u)v . 0 + (u)(v) . 0 | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | | | + | | <math>\epsilon</math>''J'' |
− | | EJ = uv . (du)(dv) + u(v) . (du)dv + (u)v . du(dv) + (u)(v) . du dv | | + | | = || ''uv'' || <math>\cdot</math> || 1 |
− | | | | + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
− | | DJ = uv . ((du)(dv)) + u(v) . (du)dv + (u)v . du(dv) + (u)(v) . du dv | | + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
− | | | | + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
− | | dJ = uv . (du, dv) + u(v) . dv + (u)v . du + (u)(v) . 0 | | + | |- |
− | | | | + | | E''J'' |
− | | rJ = uv . du dv + u(v) . du dv + (u)v . du dv + (u)(v) . du dv | | + | | = || ''uv'' || <math>\cdot</math> || (d''u'')(d''v'') |
− | | | | + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'')d''v'' |
− | o-------------------------------------------------------------------------------o
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''u''(d''v'') |
− | </pre> | + | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | |- |
| + | | D''J'' |
| + | | = || ''uv'' || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'')d''v'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''u''(d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | |- |
| + | | d''J'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''v'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| + | |- |
| + | | r''J'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | |} |
| + | |} |
| + | </font><br> |
| | | |
| ====Analytic Series : Coordinate Method==== | | ====Analytic Series : Coordinate Method==== |