MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
7,506 bytes removed
, 19:22, 18 August 2009
Line 1,094: |
Line 1,094: |
| It remains to show that the right hand side of the equation <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))} = \texttt{(} p \texttt{(} q r \texttt{))}</math> is logically equivalent to the DNF just obtained. The needed chain of equations is as follows: | | It remains to show that the right hand side of the equation <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))} = \texttt{(} p \texttt{(} q r \texttt{))}</math> is logically equivalent to the DNF just obtained. The needed chain of equations is as follows: |
| | | |
− | {| align="center" cellpadding="8" style="text-align:center; width:90%" | + | {| align="center" cellpadding="8" |
| | | | | |
− | <pre>
| + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center" |
− | o-----------------------------------------------------------o
| + | |- |
− | | Equation E_1. Proof 2, 2nd Half. |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-0.jpg|500px]] |
− | o-----------------------------------------------------------o
| + | |- |
− | | |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-1.jpg|500px]] |
− | | q r |
| + | |- |
− | | o |
| + | | [[Image:Equational Inference Bar -- Cast P.jpg|500px]] |
− | | | | | + | |- |
− | | p o |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-2.jpg|500px]] |
− | | | |
| + | |- |
− | | @ |
| + | | [[Image:Equational Inference Bar -- Domination.jpg|500px]] |
− | | |
| + | |- |
− | o=============================< CAST "p" >==================o
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-3.jpg|500px]] |
− | | |
| + | |- |
− | | q r q r |
| + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | o o o |
| + | |- |
− | | | \| |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-4.jpg|500px]] |
− | | o o |
| + | |- |
− | | | | |
| + | | [[Image:Equational Inference Bar -- Cast Q.jpg|500px]] |
− | | p o-------o---o p |
| + | |- |
− | | \ / | | + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-5.jpg|500px]] |
− | | \ / | | + | |- |
− | | \ / | | + | | [[Image:Equational Inference Bar -- Domination.jpg|500px]] |
− | | @ | | + | |- |
− | | |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-6.jpg|500px]] |
− | o=============================< Domination >================o
| + | |- |
− | | |
| + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | q r | | + | |- |
− | | o o |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-7.jpg|500px]] |
− | | | \ | | + | |- |
− | | o o |
| + | | [[Image:Equational Inference Bar -- Cast R.jpg|500px]] |
− | | | | |
| + | |- |
− | | p o-------o---o p |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-8.jpg|500px]] |
− | | \ / | | + | |- |
− | | \ / | | + | | [[Image:Equational Inference Bar -- Cancellation.jpg|500px]] |
− | | \ / |
| + | |- |
− | | @ |
| + | | [[Image:Proof (P (Q)) (P (R)) = (P (Q R)) 2-2-9.jpg|500px]] |
− | | |
| + | |- |
− | o=============================< Cancellation >==============o
| + | | [[Image:Equational Inference Bar -- DNF.jpg|500px]] |
− | | |
| + | |} |
− | | q r | | |
− | | o | | |
− | | | |
| |
− | | o |
| |
− | | | |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o=============================< CAST "q" >==================o
| |
− | | |
| |
− | | o |
| |
− | | | |
| |
− | | o r o r |
| |
− | | | | |
| |
− | | o o |
| |
− | | | | |
| |
− | | q o-------o---o q |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p | | |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o=============================< Domination >================o
| |
− | | |
| |
− | | o |
| |
− | | | |
| |
− | | o r o |
| |
− | | | | |
| |
− | | o o |
| |
− | | | | |
| |
− | | q o-------o---o q |
| |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o=============================< Cancellation >==============o
| |
− | | |
| |
− | | o r |
| |
− | | | |
| |
− | | o o |
| |
− | | | | |
| |
− | | q o-------o---o q |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p | | |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o=============================< CAST "r" >==================o
| |
− | | |
| |
− | | o | | |
− | | | |
| |
− | | o o |
| |
− | | | | |
| |
− | | o o |
| |
− | | | | |
| |
− | | r o-------o---o r | | |
− | | \ / | | |
− | | \ / o | | |
− | | \ / | |
| |
− | | q o-------o---o q |
| |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o=============================< Cancellation >==============o
| |
− | | |
| |
− | | o | | |
− | | | |
| |
− | | r o-------o---o r | | |
− | | \ / | | |
− | | \ / o | | |
− | | \ / | |
| |
− | | q o-------o---o q |
| |
− | | \ / | | |
− | | \ / | | |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / | | |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o=============================< DNF >=======================o
| |
− | </pre>
| |
| | (33) | | | (33) |
| |} | | |} |