Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
Line 2,307: Line 2,307:  
<br>
 
<br>
   −
{| align="center" border="1" cellpadding="8" style="text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
 
|+ <math>\text{Table 43.}~~\text{Composite and Compiled Order Relations}</math>
 
|+ <math>\text{Table 43.}~~\text{Composite and Compiled Order Relations}</math>
 
|- style="background:#f0f0ff"
 
|- style="background:#f0f0ff"
Line 2,660: Line 2,660:  
|}
 
|}
   −
Table 28-b shows the 3-adic relation ''Syll'' &sube; '''B'''<sup>3</sup> again, and Figure 28-c shows it plotted on a 3-cube template.
+
Table&nbsp;28-b shows the 3-adic relation <math>\operatorname{Syll} \subseteq \mathbb{B}^3</math> again, and Figure&nbsp;28-c shows it plotted on a 3-cube template.
    
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
Line 2,713: Line 2,713:  
|}
 
|}
   −
We return once more to the plane projections of ''Syll'' &sube; '''B'''<sup>3</sup>.
+
We return once more to the plane projections of <math>\operatorname{Syll} \subseteq \mathbb{B}^3.</math>
    
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
Line 2,748: Line 2,748:  
|}
 
|}
   −
In showing the 2-adic projections of a 3-adic relation ''L'' &sube; '''B'''<sup>3</sup>, I will translate the coordinates of the points in each relation to the plane of the projection, there dotting out with a dot "." the bit of the bit string that is out of place on that plane.
+
In showing the 2-adic projections of a 3-adic relation <math>L \subseteq \mathbb{B}^3,</math> I will translate the coordinates of the points in each relation to the plane of the projection, there dotting out with a dot "." the bit of the bit string that is out of place on that plane.
   −
Figure 29-c shows ''Syll'' and its three 2-adic projections:
+
Figure&nbsp;29-c shows <math>\operatorname{Syll}</math> and its three 2-adic projections:
    
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
Line 2,811: Line 2,811:  
|}
 
|}
   −
We now compute the tacit extensions of the 2-adic projections of ''Syll'', alias ''q''<sub>139</sub>, and this makes manifest its relationship to the other functions and fibers, namely, ''q''<sub>175</sub>, ''q''<sub>187</sub>, ''q''<sub>207</sub>.
+
We now compute the tacit extensions of the 2-adic projections of <math>\operatorname{Syll},</math> alias <math>q_{139},\!</math> and this makes manifest its relationship to the other functions and fibers, namely, <math>q_{175}, q_{187}, q_{207}.\!</math>
    
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
Line 3,012: Line 3,012:  
|}
 
|}
   −
The reader may wish to contemplate Figure 31 and use it to verify the following two facts:
+
The reader may wish to contemplate Figure&nbsp;31 and use it to verify the following two facts:
    
: ''Syll'' = ''TE''(''Syll''<sub>12</sub>) &cap; ''TE''(''Syll''<sub>23</sub>)
 
: ''Syll'' = ''TE''(''Syll''<sub>12</sub>) &cap; ''TE''(''Syll''<sub>23</sub>)
12,080

edits

Navigation menu