Line 2,307: |
Line 2,307: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" style="text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ <math>\text{Table 43.}~~\text{Composite and Compiled Order Relations}</math> | | |+ <math>\text{Table 43.}~~\text{Composite and Compiled Order Relations}</math> |
| |- style="background:#f0f0ff" | | |- style="background:#f0f0ff" |
Line 2,660: |
Line 2,660: |
| |} | | |} |
| | | |
− | Table 28-b shows the 3-adic relation ''Syll'' ⊆ '''B'''<sup>3</sup> again, and Figure 28-c shows it plotted on a 3-cube template. | + | Table 28-b shows the 3-adic relation <math>\operatorname{Syll} \subseteq \mathbb{B}^3</math> again, and Figure 28-c shows it plotted on a 3-cube template. |
| | | |
| {| align="center" cellpadding="10" style="text-align:center; width:90%" | | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
Line 2,713: |
Line 2,713: |
| |} | | |} |
| | | |
− | We return once more to the plane projections of ''Syll'' ⊆ '''B'''<sup>3</sup>. | + | We return once more to the plane projections of <math>\operatorname{Syll} \subseteq \mathbb{B}^3.</math> |
| | | |
| {| align="center" cellpadding="10" style="text-align:center; width:90%" | | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
Line 2,748: |
Line 2,748: |
| |} | | |} |
| | | |
− | In showing the 2-adic projections of a 3-adic relation ''L'' ⊆ '''B'''<sup>3</sup>, I will translate the coordinates of the points in each relation to the plane of the projection, there dotting out with a dot "." the bit of the bit string that is out of place on that plane. | + | In showing the 2-adic projections of a 3-adic relation <math>L \subseteq \mathbb{B}^3,</math> I will translate the coordinates of the points in each relation to the plane of the projection, there dotting out with a dot "." the bit of the bit string that is out of place on that plane. |
| | | |
− | Figure 29-c shows ''Syll'' and its three 2-adic projections: | + | Figure 29-c shows <math>\operatorname{Syll}</math> and its three 2-adic projections: |
| | | |
| {| align="center" cellpadding="10" style="text-align:center; width:90%" | | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
Line 2,811: |
Line 2,811: |
| |} | | |} |
| | | |
− | We now compute the tacit extensions of the 2-adic projections of ''Syll'', alias ''q''<sub>139</sub>, and this makes manifest its relationship to the other functions and fibers, namely, ''q''<sub>175</sub>, ''q''<sub>187</sub>, ''q''<sub>207</sub>. | + | We now compute the tacit extensions of the 2-adic projections of <math>\operatorname{Syll},</math> alias <math>q_{139},\!</math> and this makes manifest its relationship to the other functions and fibers, namely, <math>q_{175}, q_{187}, q_{207}.\!</math> |
| | | |
| {| align="center" cellpadding="10" style="text-align:center; width:90%" | | {| align="center" cellpadding="10" style="text-align:center; width:90%" |
Line 3,012: |
Line 3,012: |
| |} | | |} |
| | | |
− | The reader may wish to contemplate Figure 31 and use it to verify the following two facts: | + | The reader may wish to contemplate Figure 31 and use it to verify the following two facts: |
| | | |
| : ''Syll'' = ''TE''(''Syll''<sub>12</sub>) ∩ ''TE''(''Syll''<sub>23</sub>) | | : ''Syll'' = ''TE''(''Syll''<sub>12</sub>) ∩ ''TE''(''Syll''<sub>23</sub>) |