Changes

MyWikiBiz, Author Your Legacy — Thursday November 28, 2024
Jump to navigationJump to search
Line 2,305: Line 2,305:  
To study the differences between these two versions of transitivity within what is locally a familiar context, let's view the propositional forms involved as if they were elementary cellular automaton rules, resulting in the following Table.
 
To study the differences between these two versions of transitivity within what is locally a familiar context, let's view the propositional forms involved as if they were elementary cellular automaton rules, resulting in the following Table.
   −
{| align="center" cellpadding="10" style="text-align:center; width:90%"
+
<br>
 +
 
 +
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
 +
|+ <math>\text{Table 43.}~~\text{Composite and Compiled Order Relations}</math>
 +
|- style="background:#f0f0ff"
 
|
 
|
<pre>
+
<p><math>\mathcal{L}_1</math></p>
Table 43.  Composite and Compiled Order Relations
+
<p><math>\text{Decimal}</math></p>
o---------o------------o-----------------o----------------o-------------o
+
|
| L_1    | L_2        | L_3            | L_4            | L_5        |
+
<p><math>\mathcal{L}_2</math></p>
|        |            |                |                |            |
+
<p><math>\text{Binary}</math></p>
| Decimal | Binary     | Vector         | Cactus         | Order       |
+
|
o---------o------------o-----------------o----------------o-------------o
+
<p><math>\mathcal{L}_3</math></p>
|         |         p : 1 1 1 1 0 0 0 0 |               |             |
+
<p><math>\text{Vector}</math></p>
|         |         q : 1 1 0 0 1 1 0 0 |               |             |
+
|
|         |         r : 1 0 1 0 1 0 1 0 |               |             |
+
<p><math>\mathcal{L}_4</math></p>
o---------o------------o-----------------o----------------o-------------o
+
<p><math>\text{Cactus}</math></p>
|         |           |                |                |            |
+
|
| q_207  | q_11001111 | 1 1 0 0 1 1 1 1 | (p  (q))      | p =< q      |
+
<p><math>\mathcal{L}_5</math></p>
|        |            |                |                |            |
+
<p><math>\text{Order}</math></p>
| q_187  | q_10111011 | 1 0 1 1 1 0 1 1 |      (q  (r)) | q =< r      |
+
|- style="background:#f0f0ff"
|        |            |                |                |            |
+
| &nbsp;
| q_175  | q_10101111 | 1 0 1 0 1 1 1 1 | (p       (r)) | p =< r     |
+
| align="right" | <math>p\colon\!</math>
|        |            |                |                |            |
+
| <math>1~1~1~1~0~0~0~0</math>
| q_139  | q_10001011 | 1 0 0 0 1 0 1 1 | (p (q))(q (r)) | p =< q =< r |
+
| &nbsp;
|        |            |                |                |            |
+
| &nbsp;
o---------o------------o-----------------o----------------o-------------o
+
|- style="background:#f0f0ff"
</pre>
+
| &nbsp;
| (43)
+
| align="right" | <math>q\colon\!</math>
 +
| <math>1~1~0~0~1~1~0~0</math>
 +
| &nbsp;
 +
| &nbsp;
 +
|- style="background:#f0f0ff"
 +
| &nbsp;
 +
| align="right" | <math>r\colon\!</math>
 +
| <math>1~0~1~0~1~0~1~0</math>
 +
| &nbsp;
 +
| &nbsp;
 +
|-
 +
|
 +
<math>\begin{matrix}
 +
q_{207}
 +
\\[4pt]
 +
q_{187}
 +
\\[4pt]
 +
q_{175}
 +
\\[4pt]
 +
q_{139}
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
q_{11001111}
 +
\\[4pt]
 +
q_{10111011}
 +
\\[4pt]
 +
q_{10101111}
 +
\\[4pt]
 +
q_{10001011}
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
1~1~0~0~1~1~1~1
 +
\\[4pt]
 +
1~0~1~1~1~0~1~1
 +
\\[4pt]
 +
1~0~1~0~1~1~1~1
 +
\\[4pt]
 +
1~0~0~0~1~0~1~1
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
\texttt{(} p \texttt{~(} q \texttt{))}
 +
\\[4pt]
 +
\texttt{(} q \texttt{~(} r \texttt{))}
 +
\\[4pt]
 +
\texttt{(} p \texttt{~(} r \texttt{))}
 +
\\[4pt]
 +
\texttt{(} p \texttt{~(} q \texttt{))~(} q \texttt{~(} r \texttt{))}
 +
\end{matrix}</math>
 +
|
 +
<math>\begin{matrix}
 +
p \le q
 +
\\[4pt]
 +
q \le r
 +
\\[4pt]
 +
p \le r
 +
\\[4pt]
 +
p \le q \le r
 +
\end{matrix}</math>
 
|}
 
|}
 +
 +
<br>
    
Taking up another angle of incidence by way of extra perspective, let us now reflect on the venn diagrams of our four propositions.
 
Taking up another angle of incidence by way of extra perspective, let us now reflect on the venn diagrams of our four propositions.
12,080

edits

Navigation menu