Line 2,305: |
Line 2,305: |
| To study the differences between these two versions of transitivity within what is locally a familiar context, let's view the propositional forms involved as if they were elementary cellular automaton rules, resulting in the following Table. | | To study the differences between these two versions of transitivity within what is locally a familiar context, let's view the propositional forms involved as if they were elementary cellular automaton rules, resulting in the following Table. |
| | | |
− | {| align="center" cellpadding="10" style="text-align:center; width:90%" | + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table 43.}~~\text{Composite and Compiled Order Relations}</math> |
| + | |- style="background:#f0f0ff" |
| | | | | |
− | <pre> | + | <p><math>\mathcal{L}_1</math></p> |
− | Table 43. Composite and Compiled Order Relations
| + | <p><math>\text{Decimal}</math></p> |
− | o---------o------------o-----------------o----------------o-------------o
| + | | |
− | | L_1 | L_2 | L_3 | L_4 | L_5 |
| + | <p><math>\mathcal{L}_2</math></p> |
− | | | | | | |
| + | <p><math>\text{Binary}</math></p> |
− | | Decimal | Binary | Vector | Cactus | Order |
| + | | |
− | o---------o------------o-----------------o----------------o-------------o
| + | <p><math>\mathcal{L}_3</math></p> |
− | | | p : 1 1 1 1 0 0 0 0 | | | | + | <p><math>\text{Vector}</math></p> |
− | | | q : 1 1 0 0 1 1 0 0 | | | | + | | |
− | | | r : 1 0 1 0 1 0 1 0 | | | | + | <p><math>\mathcal{L}_4</math></p> |
− | o---------o------------o-----------------o----------------o-------------o
| + | <p><math>\text{Cactus}</math></p> |
− | | | | | | | | + | | |
− | | q_207 | q_11001111 | 1 1 0 0 1 1 1 1 | (p (q)) | p =< q |
| + | <p><math>\mathcal{L}_5</math></p> |
− | | | | | | |
| + | <p><math>\text{Order}</math></p> |
− | | q_187 | q_10111011 | 1 0 1 1 1 0 1 1 | (q (r)) | q =< r |
| + | |- style="background:#f0f0ff" |
− | | | | | | |
| + | | |
− | | q_175 | q_10101111 | 1 0 1 0 1 1 1 1 | (p (r)) | p =< r |
| + | | align="right" | <math>p\colon\!</math> |
− | | | | | | |
| + | | <math>1~1~1~1~0~0~0~0</math> |
− | | q_139 | q_10001011 | 1 0 0 0 1 0 1 1 | (p (q))(q (r)) | p =< q =< r |
| + | | |
− | | | | | | |
| + | | |
− | o---------o------------o-----------------o----------------o-------------o
| + | |- style="background:#f0f0ff" |
− | </pre> | + | | |
− | | (43)
| + | | align="right" | <math>q\colon\!</math> |
| + | | <math>1~1~0~0~1~1~0~0</math> |
| + | | |
| + | | |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>r\colon\!</math> |
| + | | <math>1~0~1~0~1~0~1~0</math> |
| + | | |
| + | | |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | q_{207} |
| + | \\[4pt] |
| + | q_{187} |
| + | \\[4pt] |
| + | q_{175} |
| + | \\[4pt] |
| + | q_{139} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | q_{11001111} |
| + | \\[4pt] |
| + | q_{10111011} |
| + | \\[4pt] |
| + | q_{10101111} |
| + | \\[4pt] |
| + | q_{10001011} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 1~1~0~0~1~1~1~1 |
| + | \\[4pt] |
| + | 1~0~1~1~1~0~1~1 |
| + | \\[4pt] |
| + | 1~0~1~0~1~1~1~1 |
| + | \\[4pt] |
| + | 1~0~0~0~1~0~1~1 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \texttt{(} p \texttt{~(} q \texttt{))} |
| + | \\[4pt] |
| + | \texttt{(} q \texttt{~(} r \texttt{))} |
| + | \\[4pt] |
| + | \texttt{(} p \texttt{~(} r \texttt{))} |
| + | \\[4pt] |
| + | \texttt{(} p \texttt{~(} q \texttt{))~(} q \texttt{~(} r \texttt{))} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p \le q |
| + | \\[4pt] |
| + | q \le r |
| + | \\[4pt] |
| + | p \le r |
| + | \\[4pt] |
| + | p \le q \le r |
| + | \end{matrix}</math> |
| |} | | |} |
| + | |
| + | <br> |
| | | |
| Taking up another angle of incidence by way of extra perspective, let us now reflect on the venn diagrams of our four propositions. | | Taking up another angle of incidence by way of extra perspective, let us now reflect on the venn diagrams of our four propositions. |