Changes

MyWikiBiz, Author Your Legacy — Friday November 29, 2024
Jump to navigationJump to search
→‎Note 1: convert graphics
Line 10: Line 10:  
Let us start with a proposition of the form <math>p ~\operatorname{and}~ q</math> that is graphed as two labels attached to a root node:
 
Let us start with a proposition of the form <math>p ~\operatorname{and}~ q</math> that is graphed as two labels attached to a root node:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellspacing="10"
 
| [[Image:Cactus Graph Existential P And Q.jpg|500px]]
 
| [[Image:Cactus Graph Existential P And Q.jpg|500px]]
 
|}
 
|}
Line 20: Line 20:  
In this style of graphical representation, the value <math>\operatorname{true}</math> looks like a blank label and the value <math>\operatorname{false}</math> looks like an edge.
 
In this style of graphical representation, the value <math>\operatorname{true}</math> looks like a blank label and the value <math>\operatorname{false}</math> looks like an edge.
   −
{| align="center" cellpadding="10"
+
{| align="center" cellspacing="10"
 
| [[Image:Cactus Graph Existential True.jpg|500px]]
 
| [[Image:Cactus Graph Existential True.jpg|500px]]
 
|}
 
|}
   −
{| align="center" cellpadding="10"
+
{| align="center" cellspacing="10"
 
| [[Image:Cactus Graph Existential False.jpg|500px]]
 
| [[Image:Cactus Graph Existential False.jpg|500px]]
 
|}
 
|}
Line 30: Line 30:  
Back to the proposition <math>pq.\!</math>  Imagine yourself standing in a fixed cell the corresponding venn diagram, say, the cell where the proposition <math>pq\!</math> is true, as shown in the following Figure:
 
Back to the proposition <math>pq.\!</math>  Imagine yourself standing in a fixed cell the corresponding venn diagram, say, the cell where the proposition <math>pq\!</math> is true, as shown in the following Figure:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellspacing="10"
 
| [[Image:Venn Diagram P And Q.jpg|500px]]
 
| [[Image:Venn Diagram P And Q.jpg|500px]]
 
|}
 
|}
Line 38: Line 38:  
Don't think about it &mdash; just compute:
 
Don't think about it &mdash; just compute:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellspacing="10"
 
| [[Image:Cactus Graph (P,dP)(Q,dQ).jpg|500px]]
 
| [[Image:Cactus Graph (P,dP)(Q,dQ).jpg|500px]]
 
|}
 
|}
Line 44: Line 44:  
The cactus formula <math>\texttt{(p, dp)(q, dq)}</math> and its corresponding graph arise by substituting <math>p + \operatorname{d}p</math> for <math>p\!</math> and <math>q + \operatorname{d}q</math> for <math>q\!</math> in the boolean product or logical conjunction <math>pq\!</math> and writing the result in the two dialects of cactus syntax.  This follows from the fact that the boolean sum <math>p + \operatorname{d}p</math> is equivalent to the logical operation of exclusive disjunction, which parses to a cactus graph of the following form:
 
The cactus formula <math>\texttt{(p, dp)(q, dq)}</math> and its corresponding graph arise by substituting <math>p + \operatorname{d}p</math> for <math>p\!</math> and <math>q + \operatorname{d}q</math> for <math>q\!</math> in the boolean product or logical conjunction <math>pq\!</math> and writing the result in the two dialects of cactus syntax.  This follows from the fact that the boolean sum <math>p + \operatorname{d}p</math> is equivalent to the logical operation of exclusive disjunction, which parses to a cactus graph of the following form:
   −
{| align="center" cellpadding="10"
+
{| align="center" cellspacing="10"
 
| [[Image:Cactus Graph (P,dP).jpg|500px]]
 
| [[Image:Cactus Graph (P,dP).jpg|500px]]
 
|}
 
|}
Line 51: Line 51:  
proposition <math>pq\!</math> over there, at a distance of <math>\operatorname{d}p</math> and <math>\operatorname{d}q,</math> and the value of the proposition <math>pq\!</math> where you are standing, all expressed in the form of a general formula, of course?  Here is the appropriate formulation:
 
proposition <math>pq\!</math> over there, at a distance of <math>\operatorname{d}p</math> and <math>\operatorname{d}q,</math> and the value of the proposition <math>pq\!</math> where you are standing, all expressed in the form of a general formula, of course?  Here is the appropriate formulation:
   −
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10"
| align="center" |
+
| [[Image:Cactus Graph ((P,dP)(Q,dQ),PQ).jpg|500px]]
<pre>
  −
o-------------------------------------------------o
  −
|                                                |
  −
|            p  dp q  dq                        |
  −
|            o---o o---o                        |
  −
|              \  | |  /                          |
  −
|              \ | | /                          |
  −
|                \| |/        p q                |
  −
|                 o=o-----------o                |
  −
|                  \          /                  |
  −
|                  \        /                  |
  −
|                    \      /                    |
  −
|                    \    /                    |
  −
|                      \  /                      |
  −
|                      \ /                      |
  −
|                        @                        |
  −
|                                                |
  −
o-------------------------------------------------o
  −
|              ((p, dp)(q, dq), p q)             |
  −
o-------------------------------------------------o
  −
</pre>
   
|}
 
|}
  
12,080

edits

Navigation menu