MyWikiBiz, Author Your Legacy — Sunday December 01, 2024
Jump to navigationJump to search
59 bytes added
, 18:14, 1 May 2009
Line 5,489: |
Line 5,489: |
| |} | | |} |
| | | |
− | It is very instructive to examine the matrix representation of <math>\mathit{l}^\mathrm{w}\!</math> at this point, not the least because it dispels the mystery of the name ''involution''. | + | It is very instructive to examine the matrix representation of <math>\mathit{l}^\mathrm{w}\!</math> at this point, not the least because it effectively dispels the mystery of the name ''involution''. First, let us make the following observation. To say that <math>\mathrm{J}\!</math> is a lover of every woman is to say that <math>\mathrm{J}\!</math> loves <math>\mathrm{K}\!</math> if <math>\mathrm{K}\!</math> is a woman. This can be rendered in symbols as follows: |
− | | |
− | {| align="center" cellspacing="6" width="90%"
| |
− | | height="60" | <math>\operatorname{Mat}(\mathit{l}^\mathrm{w}) ~=~ \operatorname{Mat}(\mathit{l})^{\operatorname{Mat}(\mathrm{w})} ~=~ \mathfrak{L}^\mathfrak{W}</math>
| |
− | |-
| |
− | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_{a} ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
| |
− | |}
| |
− | | |
− | To say that <math>\mathrm{J}\!</math> is a lover of every woman is to say that <math>\mathrm{J}\!</math> loves <math>\mathrm{K}\!</math> if <math>\mathrm{K}\!</math> is a woman. This can be rendered in symbols as follows: | |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
Line 5,528: |
Line 5,520: |
| \end{bmatrix} | | \end{bmatrix} |
| </math> | | </math> |
| + | |} |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | height="60" | <math>\operatorname{Mat}(\mathit{l}^\mathrm{w}) ~=~ \operatorname{Mat}(\mathit{l})^{\operatorname{Mat}(\mathrm{w})} ~=~ \mathfrak{L}^\mathfrak{W}</math> |
| + | |- |
| + | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_{a} ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math> |
| |} | | |} |
| | | |