Line 5,413:
Line 5,413:
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
−
| height="40" | <math>X\!</math> is a set distinguished as the ''universe of discourse''.
+
| height="40" | <math>X\!</math> is a set singled out in a particular discussion as the ''universe of discourse''.
|-
|-
| height="40" | <math>W \subseteq X</math> is the 1-adic relation, or set, whose elements fall under the absolute term <math>\mathrm{w} = \text{woman}.\!</math> The elements of <math>W\!</math> are sometimes referred to as the ''denotation'' or the set-theoretic ''extension'' of the term <math>\mathrm{w}.\!</math>
| height="40" | <math>W \subseteq X</math> is the 1-adic relation, or set, whose elements fall under the absolute term <math>\mathrm{w} = \text{woman}.\!</math> The elements of <math>W\!</math> are sometimes referred to as the ''denotation'' or the set-theoretic ''extension'' of the term <math>\mathrm{w}.\!</math>
Line 5,489:
Line 5,489:
|}
|}
−
It is very instructive to examine the matrix representation of <math>\mathit{l}^\mathrm{w}\!</math> at this point, not the least because it helps to dispel the mystery behind the name ''involution''.
+
It is very instructive to examine the matrix representation of <math>\mathit{l}^\mathrm{w}\!</math> at this point, not the least because it dispels the mystery of the name ''involution''.
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
Line 5,495:
Line 5,495:
|-
|-
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_{a} ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_{a} ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
+
|}
+
+
To say that <math>\mathrm{J}\!</math> is a lover of every woman is to say that <math>\mathrm{J}\!</math> loves <math>\mathrm{K}\!</math> if <math>\mathrm{K}\!</math> is a woman. This can be rendered in symbols as follows:
+
+
{| align="center" cellspacing="6" width="90%"
+
| <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math>
+
|}
+
+
Interpreting the formula <math>\mathit{l}^\mathrm{w}\!</math> as <math>\mathrm{J} ~\text{loves}~ \mathrm{K} ~\Leftarrow~ \mathrm{K} ~\text{is a woman}</math> highlights the form of the converse implication inherent in it, and this in turn reveals the analogy between implication and involution that accounts for the aptness of the latter name.
+
+
{| align="center" cellspacing="6" width="90%"
+
|
+
<math>
+
\begin{bmatrix}
+
0^0 & = & 1
+
\\
+
0^1 & = & 0
+
\\
+
1^0 & = & 1
+
\\
+
1^1 & = & 1
+
\end{bmatrix}
+
\qquad\qquad\qquad
+
\begin{bmatrix}
+
0\!\Leftarrow\!0 & = & 1
+
\\
+
0\!\Leftarrow\!1 & = & 0
+
\\
+
1\!\Leftarrow\!0 & = & 1
+
\\
+
1\!\Leftarrow\!1 & = & 1
+
\end{bmatrix}
+
</math>
|}
|}