| Line 2,165: | 
Line 2,165: | 
|   |  |   |  | 
|   | Naturally enough, the diagonal extensions are represented by diagonal matrices:  |   | Naturally enough, the diagonal extensions are represented by diagonal matrices:  | 
| − | 
  |   | 
| − | <br>
  |   | 
|   |  |   |  | 
|   | {| align="center" cellspacing="6" width="90%"  |   | {| align="center" cellspacing="6" width="90%"  | 
|   | + | |  | 
|   | + | |-  | 
|   | |  |   | |  | 
|   | <math>\begin{array}{c|ccccccc}  |   | <math>\begin{array}{c|ccccccc}  | 
| Line 2,204: | 
Line 2,204: | 
|   | \end{array}</math>  |   | \end{array}</math>  | 
|   | |}  |   | |}  | 
| − | 
  |   | 
| − | <br>
  |   | 
|   |  |   |  | 
|   | {| align="center" cellspacing="6" width="90%"  |   | {| align="center" cellspacing="6" width="90%"  | 
|   | + | |  | 
|   | + | |-  | 
|   | |  |   | |  | 
|   | <math>\begin{array}{c|ccccccc}  |   | <math>\begin{array}{c|ccccccc}  | 
| Line 2,244: | 
Line 2,244: | 
|   | |}  |   | |}  | 
|   |  |   |  | 
| − | <pre>  | + | {| align="center" cellspacing="6" width="90%"  | 
| − | !n!| B C D E I J O
  | + | |  | 
| − | ---o---------------  | + | |-  | 
| − |   B | 0 0 0 0 0 0 0  | + | |  | 
| − |  C | 0 1 0 0 0 0 0
  | + | <math>\begin{array}{c|ccccccc}  | 
| − |  D | 0 0 1 0 0 0 0
  | + | \mathrm{n,} &  | 
| − |  E | 0 0 0 0 0 0 0
  | + | \mathrm{B}  &  | 
| − |  I | 0 0 0 0 0 0 0
  | + | \mathrm{C}  &  | 
| − |  J | 0 0 0 0 0 0 0
  | + | \mathrm{D}  &  | 
| − |  O | 0 0 0 0 0 0 1
  | + | \mathrm{E}  &  | 
| − | </pre>  | + | \mathrm{I}  &  | 
|   | + | \mathrm{J}  &  | 
|   | + | \mathrm{O}  | 
|   | + | \\  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  | 
|   | + | \\  | 
|   | + | \mathrm{B} & 0 &   &   &   &   &   &  | 
|   | + | \\  | 
|   | + | \mathrm{C} &   & 1 &   &   &   &   &  | 
|   | + | \\  | 
|   | + | \mathrm{D} &   &   & 1 &   &   &   &  | 
|   | + | \\  | 
|   | + | \mathrm{E} &   &   &   & 0 &   &   &  | 
|   | + | \\  | 
|   | + | \mathrm{I} &   &   &   &   & 0 &   &  | 
|   | + | \\  | 
|   | + | \mathrm{J} &   &   &   &   &   & 0 &  | 
|   | + | \\  | 
|   | + | \mathrm{O} &   &   &   &   &   &   & 1  | 
|   | + | \end{array}</math>  | 
|   | + | |}  | 
|   |  |   |  | 
| − | <pre>  | + | {| align="center" cellspacing="6" width="90%"  | 
| − | !w!| B C D E I J O
  | + | |  | 
| − | ---o---------------  | + | |-  | 
| − |   B | 1 0 0 0 0 0 0  | + | |  | 
| − |  C | 0 0 0 0 0 0 0
  | + | <math>\begin{array}{c|ccccccc}  | 
| − |  D | 0 0 1 0 0 0 0
  | + | \mathrm{w,} &  | 
| − |  E | 0 0 0 1 0 0 0
  | + | \mathrm{B}  &  | 
| − |  I | 0 0 0 0 0 0 0
  | + | \mathrm{C}  &  | 
| − |  J | 0 0 0 0 0 0 0
  | + | \mathrm{D}  &  | 
| − |  O | 0 0 0 0 0 0 0
  | + | \mathrm{E}  &  | 
| − | </pre>  | + | \mathrm{I}  &  | 
|   | + | \mathrm{J}  &  | 
|   | + | \mathrm{O}  | 
|   | + | \\  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  &  | 
|   | + | \text{---}  | 
|   | + | \\  | 
|   | + | \mathrm{B} & 1 &   &   &   &   &   &  | 
|   | + | \\  | 
|   | + | \mathrm{C} &   & 0 &   &   &   &   &  | 
|   | + | \\  | 
|   | + | \mathrm{D} &   &   & 1 &   &   &   &  | 
|   | + | \\  | 
|   | + | \mathrm{E} &   &   &   & 1 &   &   &  | 
|   | + | \\  | 
|   | + | \mathrm{I} &   &   &   &   & 0 &   &  | 
|   | + | \\  | 
|   | + | \mathrm{J} &   &   &   &   &   & 0 &  | 
|   | + | \\  | 
|   | + | \mathrm{O} &   &   &   &   &   &   & 0  | 
|   | + | \end{array}</math>  | 
|   | + | |}  | 
|   |  |   |  | 
| − | Cast into the bigraph picture of 2-adic relations, the diagonal extension of an absolute term takes on a very distinctive sort of "straight-laced" character:  | + | Cast into the bigraph picture of 2-adic relations, the diagonal extension of an absolute term takes on a very distinctive sort of ''straight-laced'' character:  | 
|   |  |   |  | 
|   | <pre>  |   | <pre>  |