Line 2,165:
Line 2,165:
Naturally enough, the diagonal extensions are represented by diagonal matrices:
Naturally enough, the diagonal extensions are represented by diagonal matrices:
−
−
<br>
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
+
|
+
|-
|
|
<math>\begin{array}{c|ccccccc}
<math>\begin{array}{c|ccccccc}
Line 2,204:
Line 2,204:
\end{array}</math>
\end{array}</math>
|}
|}
−
−
<br>
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
+
|
+
|-
|
|
<math>\begin{array}{c|ccccccc}
<math>\begin{array}{c|ccccccc}
Line 2,244:
Line 2,244:
|}
|}
−
<pre>
+
{| align="center" cellspacing="6" width="90%"
−
!n!| B C D E I J O
+
|
−
---o---------------
+
|-
−
B | 0 0 0 0 0 0 0
+
|
−
C | 0 1 0 0 0 0 0
+
<math>\begin{array}{c|ccccccc}
−
D | 0 0 1 0 0 0 0
+
\mathrm{n,} &
−
E | 0 0 0 0 0 0 0
+
\mathrm{B} &
−
I | 0 0 0 0 0 0 0
+
\mathrm{C} &
−
J | 0 0 0 0 0 0 0
+
\mathrm{D} &
−
O | 0 0 0 0 0 0 1
+
\mathrm{E} &
−
</pre>
+
\mathrm{I} &
+
\mathrm{J} &
+
\mathrm{O}
+
\\
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---}
+
\\
+
\mathrm{B} & 0 & & & & & &
+
\\
+
\mathrm{C} & & 1 & & & & &
+
\\
+
\mathrm{D} & & & 1 & & & &
+
\\
+
\mathrm{E} & & & & 0 & & &
+
\\
+
\mathrm{I} & & & & & 0 & &
+
\\
+
\mathrm{J} & & & & & & 0 &
+
\\
+
\mathrm{O} & & & & & & & 1
+
\end{array}</math>
+
|}
−
<pre>
+
{| align="center" cellspacing="6" width="90%"
−
!w!| B C D E I J O
+
|
−
---o---------------
+
|-
−
B | 1 0 0 0 0 0 0
+
|
−
C | 0 0 0 0 0 0 0
+
<math>\begin{array}{c|ccccccc}
−
D | 0 0 1 0 0 0 0
+
\mathrm{w,} &
−
E | 0 0 0 1 0 0 0
+
\mathrm{B} &
−
I | 0 0 0 0 0 0 0
+
\mathrm{C} &
−
J | 0 0 0 0 0 0 0
+
\mathrm{D} &
−
O | 0 0 0 0 0 0 0
+
\mathrm{E} &
−
</pre>
+
\mathrm{I} &
+
\mathrm{J} &
+
\mathrm{O}
+
\\
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---} &
+
\text{---}
+
\\
+
\mathrm{B} & 1 & & & & & &
+
\\
+
\mathrm{C} & & 0 & & & & &
+
\\
+
\mathrm{D} & & & 1 & & & &
+
\\
+
\mathrm{E} & & & & 1 & & &
+
\\
+
\mathrm{I} & & & & & 0 & &
+
\\
+
\mathrm{J} & & & & & & 0 &
+
\\
+
\mathrm{O} & & & & & & & 0
+
\end{array}</math>
+
|}
−
Cast into the bigraph picture of 2-adic relations, the diagonal extension of an absolute term takes on a very distinctive sort of "straight-laced" character:
+
Cast into the bigraph picture of 2-adic relations, the diagonal extension of an absolute term takes on a very distinctive sort of ''straight-laced'' character:
<pre>
<pre>