| Line 2,165: |
Line 2,165: |
| | | | |
| | Naturally enough, the diagonal extensions are represented by diagonal matrices: | | Naturally enough, the diagonal extensions are represented by diagonal matrices: |
| − |
| |
| − | <br>
| |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| | + | | |
| | + | |- |
| | | | | | |
| | <math>\begin{array}{c|ccccccc} | | <math>\begin{array}{c|ccccccc} |
| Line 2,204: |
Line 2,204: |
| | \end{array}</math> | | \end{array}</math> |
| | |} | | |} |
| − |
| |
| − | <br>
| |
| | | | |
| | {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| | + | | |
| | + | |- |
| | | | | | |
| | <math>\begin{array}{c|ccccccc} | | <math>\begin{array}{c|ccccccc} |
| Line 2,244: |
Line 2,244: |
| | |} | | |} |
| | | | |
| − | <pre> | + | {| align="center" cellspacing="6" width="90%" |
| − | !n!| B C D E I J O
| + | | |
| − | ---o--------------- | + | |- |
| − | B | 0 0 0 0 0 0 0 | + | | |
| − | C | 0 1 0 0 0 0 0
| + | <math>\begin{array}{c|ccccccc} |
| − | D | 0 0 1 0 0 0 0
| + | \mathrm{n,} & |
| − | E | 0 0 0 0 0 0 0
| + | \mathrm{B} & |
| − | I | 0 0 0 0 0 0 0
| + | \mathrm{C} & |
| − | J | 0 0 0 0 0 0 0
| + | \mathrm{D} & |
| − | O | 0 0 0 0 0 0 1
| + | \mathrm{E} & |
| − | </pre> | + | \mathrm{I} & |
| | + | \mathrm{J} & |
| | + | \mathrm{O} |
| | + | \\ |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} |
| | + | \\ |
| | + | \mathrm{B} & 0 & & & & & & |
| | + | \\ |
| | + | \mathrm{C} & & 1 & & & & & |
| | + | \\ |
| | + | \mathrm{D} & & & 1 & & & & |
| | + | \\ |
| | + | \mathrm{E} & & & & 0 & & & |
| | + | \\ |
| | + | \mathrm{I} & & & & & 0 & & |
| | + | \\ |
| | + | \mathrm{J} & & & & & & 0 & |
| | + | \\ |
| | + | \mathrm{O} & & & & & & & 1 |
| | + | \end{array}</math> |
| | + | |} |
| | | | |
| − | <pre> | + | {| align="center" cellspacing="6" width="90%" |
| − | !w!| B C D E I J O
| + | | |
| − | ---o--------------- | + | |- |
| − | B | 1 0 0 0 0 0 0 | + | | |
| − | C | 0 0 0 0 0 0 0
| + | <math>\begin{array}{c|ccccccc} |
| − | D | 0 0 1 0 0 0 0
| + | \mathrm{w,} & |
| − | E | 0 0 0 1 0 0 0
| + | \mathrm{B} & |
| − | I | 0 0 0 0 0 0 0
| + | \mathrm{C} & |
| − | J | 0 0 0 0 0 0 0
| + | \mathrm{D} & |
| − | O | 0 0 0 0 0 0 0
| + | \mathrm{E} & |
| − | </pre> | + | \mathrm{I} & |
| | + | \mathrm{J} & |
| | + | \mathrm{O} |
| | + | \\ |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} & |
| | + | \text{---} |
| | + | \\ |
| | + | \mathrm{B} & 1 & & & & & & |
| | + | \\ |
| | + | \mathrm{C} & & 0 & & & & & |
| | + | \\ |
| | + | \mathrm{D} & & & 1 & & & & |
| | + | \\ |
| | + | \mathrm{E} & & & & 1 & & & |
| | + | \\ |
| | + | \mathrm{I} & & & & & 0 & & |
| | + | \\ |
| | + | \mathrm{J} & & & & & & 0 & |
| | + | \\ |
| | + | \mathrm{O} & & & & & & & 0 |
| | + | \end{array}</math> |
| | + | |} |
| | | | |
| − | Cast into the bigraph picture of 2-adic relations, the diagonal extension of an absolute term takes on a very distinctive sort of "straight-laced" character: | + | Cast into the bigraph picture of 2-adic relations, the diagonal extension of an absolute term takes on a very distinctive sort of ''straight-laced'' character: |
| | | | |
| | <pre> | | <pre> |