Line 1,125: |
Line 1,125: |
| <br> | | <br> |
| | | |
− | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
− | Rule 9 | + | | |
− | | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | If X, Y c U, | + | |- style="height:40px; text-align:center" |
− | | + | | width="80%" | |
− | then the following are equivalent: | + | | width="20%" style="border-left:1px solid black" | <math>\operatorname{Rule~9}</math> |
− | | + | |} |
− | R9a. X = Y. :R5a | + | |- |
− | ::
| + | | |
− | R9b. {X} = {Y}. :R5e | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | :R7a
| + | |- style="height:40px" |
− | ::
| + | | width="2%" style="border-top:1px solid black" | |
− | R9c. {X}(u) = {Y}(u), for all u C U. :R7b | + | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
− | ::
| + | | width="60%" style="border-top:1px solid black" | <math>P, Q ~\subseteq~ X</math> |
− | R9d. ConjUu ( {X}(u) = {Y}(u) ). :R7c | + | | width="20%" style="border-top:1px solid black; border-left:1px solid black" | |
− | ::
| + | |- style="height:40px" |
− | R9e. ConjUu ( {X}(u) <=> {Y}(u) ). :R7d | + | | |
− | ::
| + | | <math>\text{then}\!</math> |
− | R9f. ConjUu (( {X}(u) , {Y}(u) )). :R7e | + | | <math>\text{the following are equivalent:}\!</math> |
− | ::
| + | | style="border-left:1px solid black" | |
− | R9g. ConjUu (( {X} , {Y} ))$(u). :R7f | + | |} |
− | </pre> | + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:40px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="18%" style="border-top:1px solid black" | <math>\operatorname{R9a.}</math> |
| + | | width="60%" style="border-top:1px solid black" | <math>P ~=~ Q</math> |
| + | | width="20%" style="border-top:1px solid black; border-left:1px solid black; text-align:center" | <math>\operatorname{R9a~:~R5a}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:60px" |
| + | | |
| + | | <math>\operatorname{R9b.}</math> |
| + | | <math>\upharpoonleft P \upharpoonright ~=~ \upharpoonleft Q \upharpoonright</math> |
| + | | style="border-left:1px solid black; text-align:center" | |
| + | <p><math>\operatorname{R9b~:~R5e}</math></p> |
| + | <p><math>\operatorname{R9b~:~R7a}</math></p> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:60px" |
| + | | |
| + | | <math>\operatorname{R9c.}</math> |
| + | | <math>\overset{X}{\underset{x}{\forall}}~ (\upharpoonleft P \upharpoonright (x) ~=~ \upharpoonleft Q \upharpoonright (x))</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R9c~:~R7b}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R9d.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ (\upharpoonleft P \upharpoonright (x) ~=~ \upharpoonleft Q \upharpoonright (x))</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R9d~:~R7c}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R9e.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ (\upharpoonleft P \upharpoonright (x) ~\Leftrightarrow~ \upharpoonleft Q \upharpoonright (x))</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R9e~:~R7d}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:60px" |
| + | | |
| + | | <math>\operatorname{R9f.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \upharpoonleft P \upharpoonright (x) ~,~ \upharpoonleft Q \upharpoonright (x) ~\underline{))}</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R9f~:~R7e}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R9g.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \upharpoonleft P \upharpoonright ~,~ \upharpoonleft Q \upharpoonright ~\underline{))}^\$ (x)</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R9g~:~R7f}</math> |
| + | |} |
| + | |} |
| | | |
| <br> | | <br> |