| Line 1,221: | Line 1,221: | 
|  | <br> |  | <br> | 
|  |  |  |  | 
| − | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" | 
| − | Rule 10 | + | | | 
| − |   | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" | 
| − | If	X, Y	c	U, | + | |- style="height:40px; text-align:center" | 
| − |   | + | | width="80%" |   | 
| − | then the following are equivalent: | + | | width="20%" style="border-left:1px solid black" | <math>\operatorname{Rule~10}</math> | 
| − |   | + | |} | 
| − | R10a.	X =Y.	:D2a | + | |- | 
| − | 			::
 | + | | | 
| − | R10b.	u C X <=> u C Y, for all u C U.	:D2b | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" | 
| − | 			:R8a
 | + | |- style="height:40px" | 
| − | 			::
 | + | | width="2%"  style="border-top:1px solid black" |   | 
| − | R10c.	[u C X] =[u C Y].	:R8b | + | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> | 
| − | 			::
 | + | | width="60%" style="border-top:1px solid black" | <math>P, Q ~\subseteq~ X</math> | 
| − | R10d.	For all u C U, | + | | width="20%" style="border-top:1px solid black; border-left:1px solid black" |   | 
| − | 		[u C X](u) =[u C Y](u).	:R8c
 | + | |- style="height:40px" | 
| − | 			::
 | + | |   | 
| − | R10e.	ConjUu ([u C X](u) = [u C Y](u) ).	:R8d | + | | <math>\text{then}\!</math> | 
| − | 			::
 | + | | <math>\text{the following are equivalent:}\!</math> | 
| − | R10f.	ConjUu ([u C X](u) <=>[u C Y](u) ).	:R8e | + | | style="border-left:1px solid black" |   | 
| − | 			::
 | + | |} | 
| − | R10g.	ConjUu (([u C X](u) ,[u C Y](u) )).	:R8f | + | |- | 
| − | 			::
 | + | | | 
| − | R10h.	ConjUu (([u C X] ,[u C Y] ))$(u).	:R8g | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" | 
| − | </pre> | + | |- style="height:40px" | 
|  | + | | width="2%"  style="border-top:1px solid black" |   | 
|  | + | | width="18%" style="border-top:1px solid black" | <math>\operatorname{R10a.}</math> | 
|  | + | | width="60%" style="border-top:1px solid black" | <math>P ~=~ Q</math> | 
|  | + | | width="20%" style="border-top:1px solid black; border-left:1px solid black; text-align:center" | <math>\operatorname{R10a~:~D2a}</math> | 
|  | + | |- style="height:20px" | 
|  | + | |   | 
|  | + | |   | 
|  | + | |   | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | 
|  | + | |- style="height:60px" | 
|  | + | |   | 
|  | + | | <math>\operatorname{R10b.}</math> | 
|  | + | | <math>\overset{X}{\underset{x}{\forall}}~ (x \in P ~\Leftrightarrow~ x \in Q)</math> | 
|  | + | | style="border-left:1px solid black; text-align:center" | | 
|  | + | <p><math>\operatorname{R10b~:~D2b}</math></p> | 
|  | + | <p><math>\operatorname{R10b~:~R8a}</math></p> | 
|  | + | |- style="height:20px" | 
|  | + | |   | 
|  | + | |   | 
|  | + | |   | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | 
|  | + | |- style="height:40px" | 
|  | + | |   | 
|  | + | | <math>\operatorname{R10c.}</math> | 
|  | + | | <math>\downharpoonleft x \in P \downharpoonright ~=~ \downharpoonleft x \in Q \downharpoonright</math> | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10c~:~R8b}</math> | 
|  | + | |- style="height:20px" | 
|  | + | |   | 
|  | + | |   | 
|  | + | |   | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | 
|  | + | |- style="height:40px" | 
|  | + | |   | 
|  | + | | <math>\operatorname{R10d.}</math> | 
|  | + | | <math>\overset{X}{\underset{x}{\forall}}~ \downharpoonleft x \in P \downharpoonright (x) ~=~ \downharpoonleft x \in Q \downharpoonright (x)</math> | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10d~:~R8c}</math> | 
|  | + | |- style="height:20px" | 
|  | + | |   | 
|  | + | |   | 
|  | + | |   | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | 
|  | + | |- style="height:40px" | 
|  | + | |   | 
|  | + | | <math>\operatorname{R10e.}</math> | 
|  | + | | <math>\operatorname{Conj_x^X}~ (\downharpoonleft x \in P \downharpoonright (x) ~=~ \downharpoonleft x \in Q \downharpoonright (x))</math> | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10e~:~R8d}</math> | 
|  | + | |- style="height:20px" | 
|  | + | |   | 
|  | + | |   | 
|  | + | |   | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | 
|  | + | |- style="height:40px" | 
|  | + | |   | 
|  | + | | <math>\operatorname{R10f.}</math> | 
|  | + | | <math>\operatorname{Conj_x^X}~ (\downharpoonleft x \in P \downharpoonright (x) ~\Leftrightarrow~ \downharpoonleft x \in Q \downharpoonright (x))</math> | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10f~:~R8e}</math> | 
|  | + | |- style="height:20px" | 
|  | + | |   | 
|  | + | |   | 
|  | + | |   | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | 
|  | + | |- style="height:40px" | 
|  | + | |   | 
|  | + | | <math>\operatorname{R10g.}</math> | 
|  | + | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \downharpoonleft x \in P \downharpoonright (x) ~,~ \downharpoonleft x \in Q \downharpoonright (x) ~\underline{))}</math> | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10g~:~R8f}</math> | 
|  | + | |- style="height:20px" | 
|  | + | |   | 
|  | + | |   | 
|  | + | |   | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | 
|  | + | |- style="height:40px" | 
|  | + | |   | 
|  | + | | <math>\operatorname{R10h.}</math> | 
|  | + | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \downharpoonleft x \in P \downharpoonright ~,~ \downharpoonleft x \in Q \downharpoonright ~\underline{))}^\$ (x)</math> | 
|  | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10h~:~R8g}</math> | 
|  | + | |} | 
|  | + | |} | 
|  |  |  |  | 
|  | <br> |  | <br> |