Line 1,221: |
Line 1,221: |
| <br> | | <br> |
| | | |
− | <pre> | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
− | Rule 10 | + | | |
− | | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | If X, Y c U, | + | |- style="height:40px; text-align:center" |
− | | + | | width="80%" | |
− | then the following are equivalent: | + | | width="20%" style="border-left:1px solid black" | <math>\operatorname{Rule~10}</math> |
− | | + | |} |
− | R10a. X = Y. :D2a | + | |- |
− | ::
| + | | |
− | R10b. u C X <=> u C Y, for all u C U. :D2b | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | :R8a
| + | |- style="height:40px" |
− | ::
| + | | width="2%" style="border-top:1px solid black" | |
− | R10c. [u C X] = [u C Y]. :R8b | + | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
− | ::
| + | | width="60%" style="border-top:1px solid black" | <math>P, Q ~\subseteq~ X</math> |
− | R10d. For all u C U, | + | | width="20%" style="border-top:1px solid black; border-left:1px solid black" | |
− | [u C X](u) = [u C Y](u). :R8c
| + | |- style="height:40px" |
− | ::
| + | | |
− | R10e. ConjUu ( [u C X](u) = [u C Y](u) ). :R8d | + | | <math>\text{then}\!</math> |
− | ::
| + | | <math>\text{the following are equivalent:}\!</math> |
− | R10f. ConjUu ( [u C X](u) <=> [u C Y](u) ). :R8e | + | | style="border-left:1px solid black" | |
− | ::
| + | |} |
− | R10g. ConjUu (( [u C X](u) , [u C Y](u) )). :R8f | + | |- |
− | ::
| + | | |
− | R10h. ConjUu (( [u C X] , [u C Y] ))$(u). :R8g | + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
− | </pre> | + | |- style="height:40px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="18%" style="border-top:1px solid black" | <math>\operatorname{R10a.}</math> |
| + | | width="60%" style="border-top:1px solid black" | <math>P ~=~ Q</math> |
| + | | width="20%" style="border-top:1px solid black; border-left:1px solid black; text-align:center" | <math>\operatorname{R10a~:~D2a}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:60px" |
| + | | |
| + | | <math>\operatorname{R10b.}</math> |
| + | | <math>\overset{X}{\underset{x}{\forall}}~ (x \in P ~\Leftrightarrow~ x \in Q)</math> |
| + | | style="border-left:1px solid black; text-align:center" | |
| + | <p><math>\operatorname{R10b~:~D2b}</math></p> |
| + | <p><math>\operatorname{R10b~:~R8a}</math></p> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R10c.}</math> |
| + | | <math>\downharpoonleft x \in P \downharpoonright ~=~ \downharpoonleft x \in Q \downharpoonright</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10c~:~R8b}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R10d.}</math> |
| + | | <math>\overset{X}{\underset{x}{\forall}}~ \downharpoonleft x \in P \downharpoonright (x) ~=~ \downharpoonleft x \in Q \downharpoonright (x)</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10d~:~R8c}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R10e.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ (\downharpoonleft x \in P \downharpoonright (x) ~=~ \downharpoonleft x \in Q \downharpoonright (x))</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10e~:~R8d}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R10f.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ (\downharpoonleft x \in P \downharpoonright (x) ~\Leftrightarrow~ \downharpoonleft x \in Q \downharpoonright (x))</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10f~:~R8e}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R10g.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \downharpoonleft x \in P \downharpoonright (x) ~,~ \downharpoonleft x \in Q \downharpoonright (x) ~\underline{))}</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10g~:~R8f}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R10h.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \downharpoonleft x \in P \downharpoonright ~,~ \downharpoonleft x \in Q \downharpoonright ~\underline{))}^\$ (x)</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10h~:~R8g}</math> |
| + | |} |
| + | |} |
| | | |
| <br> | | <br> |