Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
Line 2: Line 2:     
<pre>
 
<pre>
1The parse of the concatenation Conc^k of the k sentences S_j,
+
Table 12Algorithmic Translation Rules
    for j = 1 to k, is defined recursively as follows:
+
o------------------------o---------o------------------------o
 
+
|                        | Parse |                        |
    a. Parse(Conc^0)        =  Node^0.
+
| Sentence in PARCE      |  -->  | Graph in PARC          |
 
+
o------------------------o---------o------------------------o
    b.  For k > 0,
+
|                        |        |                        |
 
+
| Conc^0                 |  -->  | Node^0                 |
        Parse(Conc^k_j S_j)  =  Node^k_j Parse(S_j).
+
|                        |        |                        |
 
+
| Conc^k_j S_j         |  -->  | Node^k_j Parse(S_j)   |
2.  The parse of the surcatenation Surc^k of the k sentences S_j,
+
|                        |        |                        |
    for j = 1 to k, is defined recursively as follows:
+
| Surc^0                 |  -->  | Lobe^0                 |
 
+
|                        |        |                        |
    a.  Parse(Surc^0)        =  Lobe^0.
+
| Surc^k_j S_j         |  -->  | Lobe^k_j Parse(S_j)   |
 
+
|                        |        |                        |
    b.  For k > 0,
+
o------------------------o---------o------------------------o
 
  −
        Parse(Surc^k_j S_j)  =  Lobe^k_j Parse(S_j).
   
</pre>
 
</pre>
   −
<ol style="list-style-type:decimal">
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
+
|
<li>The parse of the concatenation <math>\operatorname{Conc}_{j=1}^k</math> of the <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li>
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
+
| &nbsp;
<ol style="list-style-type:lower-alpha">
+
| From
 
+
| <math>(A)\!</math>
<li><math>\operatorname{Parse} (\operatorname{Conc}^0) ~=~ \operatorname{Node}^0.</math>
+
| and
 
+
| <math>(\operatorname{d}A)\!</math>
<li>
+
| infer
<p>For <math>k > 0,\!</math></p>
+
| <math>(A)\!</math>
 
+
| next.
<p><math>\operatorname{Parse} (\operatorname{Conc}_{j=1}^k s_j) ~=~ \operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li>
+
| &nbsp;
 
+
|-
</ol>
+
| &nbsp;
 
+
| From
<li>The parse of the surcatenation <math>\operatorname{Surc}_{j=1}^k</math> of the <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li>
+
| <math>(A)\!</math>
 
+
| and
<ol style="list-style-type:lower-alpha">
+
| <math>\operatorname{d}A\!</math>
 
+
| infer
<li><math>\operatorname{Parse} (\operatorname{Surc}^0) ~=~ \operatorname{Lobe}^0.</math>
+
| <math>A\!</math>
 
+
| next.
<li>
+
| &nbsp;
<p>For <math>k > 0,\!</math></p>
+
|-
 
+
| &nbsp;
<p><math>\operatorname{Parse} (\operatorname{Surc}_{j=1}^k s_j) ~=~ \operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li>
+
| From
 
+
| <math>A\!</math>
</ol></ol>
+
| and
 +
| <math>(\operatorname{d}A)\!</math>
 +
| infer
 +
| <math>A\!</math>
 +
| next.
 +
| &nbsp;
 +
|-
 +
| &nbsp;
 +
| From
 +
| <math>A\!</math>
 +
| and
 +
| <math>\operatorname{d}A\!</math>
 +
| infer
 +
| <math>(A)\!</math>
 +
| next.
 +
| &nbsp;
 +
|}
 +
|}
    
==Table Stuff==
 
==Table Stuff==
12,080

edits

Navigation menu