MyWikiBiz, Author Your Legacy — Saturday November 23, 2024
Jump to navigationJump to search
105 bytes added
, 22:14, 19 January 2009
Line 2: |
Line 2: |
| | | |
| <pre> | | <pre> |
− | 1. The parse of the concatenation Conc^k of the k sentences S_j,
| + | Table 12. Algorithmic Translation Rules |
− | for j = 1 to k, is defined recursively as follows:
| + | o------------------------o---------o------------------------o |
− | | + | | | Parse | | |
− | a. Parse(Conc^0) = Node^0.
| + | | Sentence in PARCE | --> | Graph in PARC | |
− | | + | o------------------------o---------o------------------------o |
− | b. For k > 0,
| + | | | | | |
− | | + | | Conc^0 | --> | Node^0 | |
− | Parse(Conc^k_j S_j) = Node^k_j Parse(S_j).
| + | | | | | |
− | | + | | Conc^k_j S_j | --> | Node^k_j Parse(S_j) | |
− | 2. The parse of the surcatenation Surc^k of the k sentences S_j,
| + | | | | | |
− | for j = 1 to k, is defined recursively as follows:
| + | | Surc^0 | --> | Lobe^0 | |
− | | + | | | | | |
− | a. Parse(Surc^0) = Lobe^0.
| + | | Surc^k_j S_j | --> | Lobe^k_j Parse(S_j) | |
− | | + | | | | | |
− | b. For k > 0,
| + | o------------------------o---------o------------------------o |
− | | |
− | Parse(Surc^k_j S_j) = Lobe^k_j Parse(S_j).
| |
| </pre> | | </pre> |
| | | |
− | <ol style="list-style-type:decimal">
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
− | | + | | |
− | <li>The parse of the concatenation <math>\operatorname{Conc}_{j=1}^k</math> of the <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li>
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
− | | + | | |
− | <ol style="list-style-type:lower-alpha">
| + | | From |
− | | + | | <math>(A)\!</math> |
− | <li><math>\operatorname{Parse} (\operatorname{Conc}^0) ~=~ \operatorname{Node}^0.</math>
| + | | and |
− | | + | | <math>(\operatorname{d}A)\!</math> |
− | <li>
| + | | infer |
− | <p>For <math>k > 0,\!</math></p>
| + | | <math>(A)\!</math> |
− | | + | | next. |
− | <p><math>\operatorname{Parse} (\operatorname{Conc}_{j=1}^k s_j) ~=~ \operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li>
| + | | |
− | | + | |- |
− | </ol>
| + | | |
− | | + | | From |
− | <li>The parse of the surcatenation <math>\operatorname{Surc}_{j=1}^k</math> of the <math>k\!</math> sentences <math>(s_j)_{j=1}^k</math> is defined recursively as follows:</li>
| + | | <math>(A)\!</math> |
− | | + | | and |
− | <ol style="list-style-type:lower-alpha">
| + | | <math>\operatorname{d}A\!</math> |
− | | + | | infer |
− | <li><math>\operatorname{Parse} (\operatorname{Surc}^0) ~=~ \operatorname{Lobe}^0.</math>
| + | | <math>A\!</math> |
− | | + | | next. |
− | <li>
| + | | |
− | <p>For <math>k > 0,\!</math></p>
| + | |- |
− | | + | | |
− | <p><math>\operatorname{Parse} (\operatorname{Surc}_{j=1}^k s_j) ~=~ \operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j).</math></p></li>
| + | | From |
− | | + | | <math>A\!</math> |
− | </ol></ol>
| + | | and |
| + | | <math>(\operatorname{d}A)\!</math> |
| + | | infer |
| + | | <math>A\!</math> |
| + | | next. |
| + | | |
| + | |- |
| + | | |
| + | | From |
| + | | <math>A\!</math> |
| + | | and |
| + | | <math>\operatorname{d}A\!</math> |
| + | | infer |
| + | | <math>(A)\!</math> |
| + | | next. |
| + | | |
| + | |} |
| + | |} |
| | | |
| ==Table Stuff== | | ==Table Stuff== |