Changes

MyWikiBiz, Author Your Legacy — Friday November 01, 2024
Jump to navigationJump to search
Line 1,674: Line 1,674:  
The <math>j^\text{th}\!</math> ''extract'' of a strait of the form <math>S_1 \times \ldots \times S_k,\!</math> constrained to a frame of discussion where the number of places is restricted to <math>k,\!</math> is the strait of the form <math>X \times \ldots \times S_j \times \ldots \times X.</math>  In the appropriate context, this can be denoted more succinctly by the stricture <math>^{\backprime\backprime} \, (S_j)_{[j]} \, ^{\prime\prime},</math> an assertion that places the <math>j^\text{th}\!</math> set in the <math>j^\text{th}\!</math> place of the product.
 
The <math>j^\text{th}\!</math> ''extract'' of a strait of the form <math>S_1 \times \ldots \times S_k,\!</math> constrained to a frame of discussion where the number of places is restricted to <math>k,\!</math> is the strait of the form <math>X \times \ldots \times S_j \times \ldots \times X.</math>  In the appropriate context, this can be denoted more succinctly by the stricture <math>^{\backprime\backprime} \, (S_j)_{[j]} \, ^{\prime\prime},</math> an assertion that places the <math>j^\text{th}\!</math> set in the <math>j^\text{th}\!</math> place of the product.
   −
<pre>
+
In these terms, a stricture of the form <math>^{\backprime\backprime} \, S_1 \times \ldots \times S_k \, ^{\prime\prime}</math> can be expressed in terms of simpler strictures, to wit, as a conjunction of its <math>k\!</math> excerpts:
In these terms, a stricture of the form "S_1 x ... x S_k"
  −
can be expressed in terms of simpler strictures, to wit,
  −
as a conjunction of its k excerpts:
     −
"S_1 x ... x S_k"   =   "S_1_<1>" & ...  & "S_k_<k>".
+
{| align="center" cellpadding="8" width="90%"
 +
|
 +
<math>\begin{array}{lll}
 +
^{\backprime\backprime} \, S_1 \times \ldots \times S_k \, ^{\prime\prime}
 +
& = &
 +
^{\backprime\backprime} \, (S_1)_{[1]} \, ^{\prime\prime}
 +
\, \land \ldots \land \,
 +
^{\backprime\backprime} \, (S_k)_{[k]} \, ^{\prime\prime}.
 +
\end{array}</math>
 +
|}
    +
<pre>
 
In a similar vein, a strait of the form S_1 x ... x S_k
 
In a similar vein, a strait of the form S_1 x ... x S_k
 
can be expressed in terms of simpler straits, namely,
 
can be expressed in terms of simpler straits, namely,
12,080

edits

Navigation menu