MyWikiBiz, Author Your Legacy — Saturday November 23, 2024
Jump to navigationJump to search
87 bytes added
, 22:54, 14 December 2008
Line 525: |
Line 525: |
| As a special application of this operator, we next define the absolute umpire operator, also called the ''umpire measure''. This is a higher order proposition <math>\Upsilon_1 : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> which is given by the relation <math>\Upsilon_1 (f) = \Upsilon (1, f).\!</math> Here, the subscript 1 on the left and the argument 1 on the right both refer to the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}.</math> In most contexts where <math>\Upsilon_1\!</math> is actually applied the subscript 1 is safely omitted, since the number of arguments indicates which type of operator is intended. Thus, we have the following identities and equivalents: | | As a special application of this operator, we next define the absolute umpire operator, also called the ''umpire measure''. This is a higher order proposition <math>\Upsilon_1 : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}</math> which is given by the relation <math>\Upsilon_1 (f) = \Upsilon (1, f).\!</math> Here, the subscript 1 on the left and the argument 1 on the right both refer to the constant proposition <math>1 : \mathbb{B}^2 \to \mathbb{B}.</math> In most contexts where <math>\Upsilon_1\!</math> is actually applied the subscript 1 is safely omitted, since the number of arguments indicates which type of operator is intended. Thus, we have the following identities and equivalents: |
| | | |
− | {| align="center" cellpadding="8" | + | {| align="center" cellpadding="10" style="text-align:center" |
− | | <math>\Upsilon f = \Upsilon_1 (f) = 1 \in \mathbb{B} \quad \Leftrightarrow \quad (1 (f)) = 1 \quad \Leftrightarrow \quad f = 1 : \mathbb{B}^2 \to \mathbb{B}.</math> | + | | <math>\Upsilon f = \Upsilon_1 (f) = 1 \in \mathbb{B}</math> |
| + | | <math>\Leftrightarrow</math> |
| + | | <math>\underline{(1~(f))} = \underline{1}</math> |
| + | | <math>\Leftrightarrow</math> |
| + | | <math>f = 1 : \mathbb{B}^2 \to \mathbb{B}.</math> |
| |} | | |} |
| | | |