Line 491: |
Line 491: |
| Given an ordered pair of propositions <math>e, f : \langle u, v \rangle \to \mathbb{B}</math> as arguments, the relative operator reports the value 1 if the first implies the second, otherwise 0. | | Given an ordered pair of propositions <math>e, f : \langle u, v \rangle \to \mathbb{B}</math> as arguments, the relative operator reports the value 1 if the first implies the second, otherwise 0. |
| | | |
− | {| align="center" cellpadding="8" | + | {| align="center" cellpadding="8" style="text-align:center" |
| | <math>\Upsilon (e, f) = 1\!</math> | | | <math>\Upsilon (e, f) = 1\!</math> |
| | <math>\operatorname{if~and~only~if}</math> | | | <math>\operatorname{if~and~only~if}</math> |
Line 499: |
Line 499: |
| Expressing it another way, we may also write: | | Expressing it another way, we may also write: |
| | | |
− | {| align="center" cellpadding="8" | + | {| align="center" cellpadding="8" style="text-align:center" |
| | <math>\Upsilon (e, f) = 1\!</math> | | | <math>\Upsilon (e, f) = 1\!</math> |
| | <math>\Leftrightarrow</math> | | | <math>\Leftrightarrow</math> |
Line 507: |
Line 507: |
| In writing this, however, it is important to notice that the 1's appearing on the left and right have different meanings. Filling in the details, we have: | | In writing this, however, it is important to notice that the 1's appearing on the left and right have different meanings. Filling in the details, we have: |
| | | |
− | {| align="center" cellpadding="8" | + | {| align="center" cellpadding="8" style="text-align:center" |
| | <math>\Upsilon (e, f) = 1 \in \mathbb{B}</math> | | | <math>\Upsilon (e, f) = 1 \in \mathbb{B}</math> |
| | <math>\Leftrightarrow</math> | | | <math>\Leftrightarrow</math> |
Line 515: |
Line 515: |
| Writing types as subscripts and using the fact that <math>X = \langle u, v \rangle,</math> it is possible to express this a little more succinctly as follows: | | Writing types as subscripts and using the fact that <math>X = \langle u, v \rangle,</math> it is possible to express this a little more succinctly as follows: |
| | | |
− | {| align="center" cellpadding="8" | + | {| align="center" cellpadding="8" style="text-align:center" |
| | <math>\Upsilon (e, f) = 1_\mathbb{B}</math> | | | <math>\Upsilon (e, f) = 1_\mathbb{B}</math> |
| | <math>\Leftrightarrow</math> | | | <math>\Leftrightarrow</math> |