Changes

MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
4,714 bytes added ,  03:14, 9 December 2008
→‎Exercise 1: add tables
Line 329: Line 329:     
<blockquote>
 
<blockquote>
<math>(\forall x \in X)(Px \Rightarrow Qx)</math>
+
<math>(\forall x \in X)(p(x) \Rightarrow q(x))</math>
 
</blockquote>
 
</blockquote>
   −
This is just the form <math>\operatorname{All}\ P\ \operatorname{are}\ Q,</math> already covered here:
+
<blockquote>
 +
<math>\prod_{x \in X} (p_x (q_x)) = 1</math>
 +
</blockquote>
 +
 
 +
This is just the form <math>\operatorname{All}\ p\ \operatorname{are}\ q,</math> already covered here:
    
: [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory#Application_of_Higher_Order_Propositions_to_Quantification_Theory|Application of Higher Order Propositions to Quantification Theory]]
 
: [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory#Application_of_Higher_Order_Propositions_to_Quantification_Theory|Application of Higher Order Propositions to Quantification Theory]]
    
Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>
 
Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>
 +
 +
{| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 +
|+ '''Table 1.  Simple Qualifiers of Propositions (''n'' = 2)'''
 +
|- style="background:ghostwhite"
 +
| align="right" | <math>p:</math><br><math>q:</math>
 +
| 1100<br>1010
 +
| <math>f\!</math>
 +
| <math>(\ell_{11})</math><br><math>\text{No } p </math><br><math>\text{is } q </math>
 +
| <math>(\ell_{10})</math><br><math>\text{No } p </math><br><math>\text{is }(q)</math>
 +
| <math>(\ell_{01})</math><br><math>\text{No }(p)</math><br><math>\text{is } q </math>
 +
| <math>(\ell_{00})</math><br><math>\text{No }(p)</math><br><math>\text{is }(q)</math>
 +
| <math> \ell_{00} </math><br><math>\text{Some }(p)</math><br><math>\text{is }(q)</math>
 +
| <math> \ell_{01} </math><br><math>\text{Some }(p)</math><br><math>\text{is } q </math>
 +
| <math> \ell_{10} </math><br><math>\text{Some } p </math><br><math>\text{is }(q)</math>
 +
| <math> \ell_{11} </math><br><math>\text{Some } p </math><br><math>\text{is } q </math>
 +
|-
 +
| <math>f_0</math> || 0000 || <math>(~)</math>
 +
| 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0
 +
|-
 +
| <math>f_1</math> || 0001 || <math>(p)(q)\!</math>
 +
| 1 || 1 || 1 || 0 || 1 || 0 || 0 || 0
 +
|-
 +
| <math>f_2</math> || 0010 || <math>(p) q\!</math>
 +
| 1 || 1 || 0 || 1 || 0 || 1 || 0 || 0
 +
|-
 +
| <math>f_3</math> || 0011 || <math>(p)\!</math>
 +
| 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0
 +
|-
 +
| <math>f_4</math> || 0100 || <math>p (q)\!</math>
 +
| 1 || 0 || 1 || 1 || 0 || 0 || 1 || 0
 +
|-
 +
| <math>f_5</math> || 0101 || <math>(q)\!</math>
 +
| 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0
 +
|-
 +
| <math>f_6</math> || 0110 || <math>(p, q)\!</math>
 +
| 1 || 0 || 0 || 1 || 0 || 1 || 1 || 0
 +
|-
 +
| <math>f_7</math> || 0111 || <math>(p q)\!</math>
 +
| 1 || 0 || 0 || 0 || 1 || 1 || 1 || 0
 +
|-
 +
| <math>f_8</math> || 1000 || <math>p q\!</math>
 +
| 0 || 1 || 1 || 1 || 0 || 0 || 0 || 1
 +
|-
 +
| <math>f_9</math> || 1001 || <math>((p, q))\!</math>
 +
| 0 || 1 || 1 || 0 || 1 || 0 || 0 || 1
 +
|-
 +
| <math>f_{10}</math> || 1010 || <math>q\!</math>
 +
| 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1
 +
|-
 +
| <math>f_{11}</math> || 1011 || <math>(p (q))\!</math>
 +
| 0 || 1 || 0 || 0 || 1 || 1 || 0 || 1
 +
|-
 +
| <math>f_{12}</math> || 1100 || <math>p\!</math>
 +
| 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1
 +
|-
 +
| <math>f_{13}</math> || 1101 || <math>((p) q)\!</math>
 +
| 0 || 0 || 1 || 0 || 1 || 0 || 1 || 1
 +
|-
 +
| <math>f_{14}</math> || 1110 || <math>((p)(q))\!</math>
 +
| 0 || 0 || 0 || 1 || 0 || 1 || 1 || 1
 +
|-
 +
| <math>f_{15}</math> || 1111 || <math>((~))</math>
 +
| 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1
 +
|}<br>
 +
 +
{| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 +
|+ '''Table 2.  Relation of Quantifiers to Higher Order Propositions'''
 +
|- style="background:ghostwhite"
 +
| <math>\text{Mnemonic}</math>
 +
| <math>\text{Category}</math>
 +
| <math>\text{Classical Form}</math>
 +
| <math>\text{Alternate Form}</math>
 +
| <math>\text{Symmetric Form}</math>
 +
| <math>\text{Operator}</math>
 +
|-
 +
| <math>\text{E}\!</math><br><math>\text{Exclusive}</math>
 +
| <math>\text{Universal}</math><br><math>\text{Negative}</math>
 +
| <math>\text{All}\ p\ \text{is}\ (q)</math>
 +
| &nbsp;
 +
| <math>\text{No}\  p\ \text{is}\  q </math>
 +
| <math>(\ell_{11})</math>
 +
|-
 +
| <math>\text{A}\!</math><br><math>\text{Absolute}</math>
 +
| <math>\text{Universal}</math><br><math>\text{Affirmative}</math>
 +
| <math>\text{All}\ p\ \text{is}\  q </math>
 +
| &nbsp;
 +
| <math>\text{No}\  p\ \text{is}\ (q)</math>
 +
| <math>(\ell_{10})</math>
 +
|-
 +
| &nbsp;
 +
| &nbsp;
 +
| <math>\text{All}\ q\  \text{is}\  p </math>
 +
| <math>\text{No}\  q\  \text{is}\ (p)</math>
 +
| <math>\text{No}\ (p)\ \text{is}\  q </math>
 +
| <math>(\ell_{01})</math>
 +
|-
 +
| &nbsp;
 +
| &nbsp;
 +
| <math>\text{All}\ (q)\ \text{is}\  p </math>
 +
| <math>\text{No}\  (q)\ \text{is}\ (p)</math>
 +
| <math>\text{No}\  (p)\ \text{is}\ (q)</math>
 +
| <math>(\ell_{00})</math>
 +
|-
 +
| &nbsp;
 +
| &nbsp;
 +
| <math>\text{Some}\ (p)\ \text{is}\ (q)</math>
 +
| &nbsp;
 +
| <math>\text{Some}\ (p)\ \text{is}\ (q)</math>
 +
| <math>\ell_{00}\!</math>
 +
|-
 +
| &nbsp;
 +
| &nbsp;
 +
| <math>\text{Some}\ (p)\ \text{is}\ q</math>
 +
| &nbsp;
 +
| <math>\text{Some}\ (p)\ \text{is}\ q</math>
 +
| <math>\ell_{01}\!</math>
 +
|-
 +
| <math>\text{O}\!</math><br><math>\text{Obtrusive}</math>
 +
| <math>\text{Particular}</math><br><math>\text{Negative}</math>
 +
| <math>\text{Some}\ p\ \text{is}\ (q)</math>
 +
| &nbsp;
 +
| <math>\text{Some}\ p\ \text{is}\ (q)</math>
 +
| <math>\ell_{10}\!</math>
 +
|-
 +
| <math>\text{I}\!</math><br><math>\text{Indefinite}</math>
 +
| <math>\text{Particular}</math><br><math>\text{Affirmative}</math>
 +
| <math>\text{Some}\ p\ \text{is}\ q</math>
 +
| &nbsp;
 +
| <math>\text{Some}\ p\ \text{is}\ y</math>
 +
| <math>\ell_{11}\!</math>
 +
|}<br>
    
====Exercise 2====
 
====Exercise 2====
12,080

edits

Navigation menu