Changes

436 bytes added ,  04:42, 24 August 2008
→‎Axioms: format displays as <math> arrays
Line 219: Line 219:  
|}
 
|}
   −
Here is one way of reading the axioms under the entitative interpretation:
+
One way of assigning logical meaning to the initial equations is known as the ''entitative interpretation'' (EN).  Under EN, the axioms read as follows:
   −
{| align="center" cellpadding="4" style="width:80%"
+
{| align="center" border="0" cellpadding="10"
| style="width:10%" | I<sub>1</sub>
+
|
| style="width:30%" | true or true
+
<math>\begin{array}{ccccc}
| style="width:10%" | =
+
I_1 & : &
| style="width:30%" | true
+
\operatorname{true}\ \operatorname{or}\ \operatorname{true} & = &
|-
+
\operatorname{true} \\
| I<sub>2</sub>
+
I_2 & : &
| not true
+
\operatorname{not}\ \operatorname{true}\ & = &
| =
+
\operatorname{false} \\
| false
+
J_1 & : &
|-
+
a\ \operatorname{or}\ \operatorname{not}\ a & = &
| J<sub>1</sub>
+
\operatorname{true} \\
| ''a'' or not ''a''
+
J_2 & : &
| =
+
(a\ \operatorname{or}\ b)\ \operatorname{and}\ (a\ \operatorname{or}\ c) & = &
| true
+
a\ \operatorname{or}\ (b\ \operatorname{and}\ c) \\
|-
+
\end{array}</math>
| J<sub>2</sub>.
  −
| [''a'' or ''b''] and [''a'' or ''c'']
  −
| =
  −
| ''a'' or [''b'' and ''c'']
   
|}
 
|}
   −
Here is one way of reading the axioms under the existential interpretation:
+
Another way of assigning logical meaning to the initial equations is known as the ''existential interpretation'' (EX).  Under EX, the axioms read as follows:
   −
{| align="center" cellpadding="4" style="width:80%"
+
{| align="center" border="0" cellpadding="10"
| style="width:10%" | I<sub>1</sub>
+
|
| style="width:30%" | false and false
+
<math>\begin{array}{ccccc}
| style="width:10%" | =
+
I_1 & : &
| style="width:30%" | false
+
\operatorname{false}\ \operatorname{and}\ \operatorname{false} & = &
|-
+
\operatorname{false} \\
| I<sub>2</sub>
+
I_2 & : &
| not false
+
\operatorname{not}\ \operatorname{false} & = &
| =
+
\operatorname{true} \\
| true
+
J_1 & : &
|-
+
a\ \operatorname{and}\ \operatorname{not}\ a & = &
| J<sub>1</sub>
+
\operatorname{false} \\
| ''a'' and not ''a''
+
J_2 & : &
| =
+
(a\ \operatorname{and}\ b)\ \operatorname{or}\ (a\ \operatorname{and}\ c) & = &
| false
+
a\ \operatorname{and}\ (b\ \operatorname{or}\ c) \\
|-
+
\end{array}</math>
| J<sub>2</sub>
  −
| [''a'' and ''b''] or [''a'' and ''c'']
  −
| =
  −
| ''a'' and [''b'' or ''c'']
   
|}
 
|}
  
12,089

edits