Line 219: |
Line 219: |
| |} | | |} |
| | | |
− | Here is one way of reading the axioms under the entitative interpretation:
| + | One way of assigning logical meaning to the initial equations is known as the ''entitative interpretation'' (EN). Under EN, the axioms read as follows: |
| | | |
− | {| align="center" cellpadding="4" style="width:80%" | + | {| align="center" border="0" cellpadding="10" |
− | | style="width:10%" | I<sub>1</sub> | + | | |
− | | style="width:30%" | true or true
| + | <math>\begin{array}{ccccc} |
− | | style="width:10%" | =
| + | I_1 & : & |
− | | style="width:30%" | true
| + | \operatorname{true}\ \operatorname{or}\ \operatorname{true} & = & |
− | |-
| + | \operatorname{true} \\ |
− | | I<sub>2</sub>
| + | I_2 & : & |
− | | not true
| + | \operatorname{not}\ \operatorname{true}\ & = & |
− | | =
| + | \operatorname{false} \\ |
− | | false
| + | J_1 & : & |
− | |-
| + | a\ \operatorname{or}\ \operatorname{not}\ a & = & |
− | | J<sub>1</sub>
| + | \operatorname{true} \\ |
− | | ''a'' or not ''a''
| + | J_2 & : & |
− | | =
| + | (a\ \operatorname{or}\ b)\ \operatorname{and}\ (a\ \operatorname{or}\ c) & = & |
− | | true
| + | a\ \operatorname{or}\ (b\ \operatorname{and}\ c) \\ |
− | |-
| + | \end{array}</math> |
− | | J<sub>2</sub>.
| |
− | | [''a'' or ''b''] and [''a'' or ''c'']
| |
− | | =
| |
− | | ''a'' or [''b'' and ''c'']
| |
| |} | | |} |
| | | |
− | Here is one way of reading the axioms under the existential interpretation:
| + | Another way of assigning logical meaning to the initial equations is known as the ''existential interpretation'' (EX). Under EX, the axioms read as follows: |
| | | |
− | {| align="center" cellpadding="4" style="width:80%" | + | {| align="center" border="0" cellpadding="10" |
− | | style="width:10%" | I<sub>1</sub> | + | | |
− | | style="width:30%" | false and false
| + | <math>\begin{array}{ccccc} |
− | | style="width:10%" | =
| + | I_1 & : & |
− | | style="width:30%" | false
| + | \operatorname{false}\ \operatorname{and}\ \operatorname{false} & = & |
− | |-
| + | \operatorname{false} \\ |
− | | I<sub>2</sub>
| + | I_2 & : & |
− | | not false
| + | \operatorname{not}\ \operatorname{false} & = & |
− | | =
| + | \operatorname{true} \\ |
− | | true
| + | J_1 & : & |
− | |-
| + | a\ \operatorname{and}\ \operatorname{not}\ a & = & |
− | | J<sub>1</sub>
| + | \operatorname{false} \\ |
− | | ''a'' and not ''a''
| + | J_2 & : & |
− | | =
| + | (a\ \operatorname{and}\ b)\ \operatorname{or}\ (a\ \operatorname{and}\ c) & = & |
− | | false
| + | a\ \operatorname{and}\ (b\ \operatorname{or}\ c) \\ |
− | |-
| + | \end{array}</math> |
− | | J<sub>2</sub>
| |
− | | [''a'' and ''b''] or [''a'' and ''c'']
| |
− | | =
| |
− | | ''a'' and [''b'' or ''c'']
| |
| |} | | |} |
| | | |