MyWikiBiz, Author Your Legacy — Friday January 10, 2025
Jump to navigationJump to search
820 bytes added
, 15:22, 5 June 2008
Line 279: |
Line 279: |
| | | |
| \item | | \item |
− | The initial space, $A = \langle a_1, \ldots, a_n \rangle,$ is extended by a \textit{first order differential space} or \textit{tangent space}, $\operatorname{d}A = \langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle,$ at each point of $A$, resulting in a \textit{first order extended space} or \textit{tangent bundle}, $\operatorname{E}A,$ defined as follows: | + | The initial space, $A = \langle a_1, \ldots, a_n \rangle,$ is extended by a \textit{first order differential space} or \textit{tangent space}, $\operatorname{d}A = \langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle,$ at each point of $A,$ resulting in a \textit{first order extended space} or \textit{tangent bundle space}, $\operatorname{E}A,$ defined as follows: |
| | | |
| \begin{quote} | | \begin{quote} |
| $\operatorname{E}A = A\ \times\ \operatorname{d}A = \langle \operatorname{E}\mathcal{A} \rangle = \langle \mathcal{A}\ \cup\ \operatorname{d}\mathcal{A} \rangle = \langle a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle.$ | | $\operatorname{E}A = A\ \times\ \operatorname{d}A = \langle \operatorname{E}\mathcal{A} \rangle = \langle \mathcal{A}\ \cup\ \operatorname{d}\mathcal{A} \rangle = \langle a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle.$ |
| + | \end{quote} |
| + | |
| + | \item |
| + | Finally, the initial universe, $A^\circ = [ a_1, \ldots, a_n ],$ is extended by a \textit{first order differential universe} or \textit{tangent universe}, $\operatorname{d}A^\circ = [ \operatorname{d}a_1, \ldots, \operatorname{d}a_n ],$ at each point of $A^\circ,$ resulting in a \textit{first order extended universe} or \textit{tangent bundle universe}, $\operatorname{E}A^\circ,$ defined as follows: |
| + | |
| + | \begin{quote} |
| + | $\operatorname{E}A^\circ = [ \operatorname{E}\mathcal{A} ] = [ \mathcal{A}\ \cup\ \operatorname{d}\mathcal{A} ] = [ a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n ].$ |
| \end{quote} | | \end{quote} |
| \end{itemize} | | \end{itemize} |
| + | |
| + | This gives $\operatorname{E}A^\circ$ the type $(\mathbb{B}^n \times \mathbb{D}^n\ +\!\to \mathbb{B}) = (\mathbb{B}^n \times \mathbb{D}^n, \mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B}).$ |
| | | |
| $\dots$ | | $\dots$ |