MyWikiBiz, Author Your Legacy — Saturday October 25, 2025
Jump to navigationJump to search
67 bytes added
, 19:45, 5 June 2008
| Line 290: |
Line 290: |
| | \begin{quote} | | \begin{quote} |
| | $\operatorname{E}A^\circ = [ \operatorname{E}\mathcal{A} ] = [ \mathcal{A}\ \cup\ \operatorname{d}\mathcal{A} ] = [ a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n ].$ | | $\operatorname{E}A^\circ = [ \operatorname{E}\mathcal{A} ] = [ \mathcal{A}\ \cup\ \operatorname{d}\mathcal{A} ] = [ a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n ].$ |
| | + | \end{quote} |
| | + | |
| | + | This gives $\operatorname{E}A^\circ$ the type: |
| | + | |
| | + | \begin{quote} |
| | + | $[ \mathbb{B}^n \times \mathbb{D}^n ] = (\mathbb{B}^n \times \mathbb{D}^n\ +\!\to \mathbb{B}) = (\mathbb{B}^n \times \mathbb{D}^n, \mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B}).$ |
| | \end{quote} | | \end{quote} |
| | \end{itemize} | | \end{itemize} |
| − |
| |
| − | This gives $\operatorname{E}A^\circ$ the type $(\mathbb{B}^n \times \mathbb{D}^n\ +\!\to \mathbb{B}) = (\mathbb{B}^n \times \mathbb{D}^n, \mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B}).$
| |
| | | | |
| | $\dots$ | | $\dots$ |