| Line 2,317: | 
Line 2,317: | 
|   |  |   |  | 
|   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  | 
| − | |+ '''Table 1.  Propositional Forms on Two Variables'''  | + | |+ '''Propositional Forms on Two Variables'''  | 
|   | |- style="background:ghostwhite"  |   | |- style="background:ghostwhite"  | 
|   | | style="width:16%" | <math>\mathcal{L}_1</math>  |   | | style="width:16%" | <math>\mathcal{L}_1</math>  | 
| Line 2,453: | 
Line 2,453: | 
|   | |}  |   | |}  | 
|   | <br>  |   | <br>  | 
|   | + |  | 
|   | + | =Archive 3=  | 
|   |  |   |  | 
|   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  | 
| − | |+ '''Table 1.  Propositional Forms on Two Variables'''  | + | |+ '''Propositional Forms on Two Variables'''  | 
|   | |- style="background:ghostwhite"  |   | |- style="background:ghostwhite"  | 
|   | | style="width:16%" | <math>\mathcal{L}_1</math>  |   | | style="width:16%" | <math>\mathcal{L}_1</math>  | 
| Line 2,593: | 
Line 2,595: | 
|   |  |   |  | 
|   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  | 
| − | |+ '''Table 2.  <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>'''  | + | |+ '''<math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>'''  | 
|   | |- style="background:ghostwhite"  |   | |- style="background:ghostwhite"  | 
|   | | style="width:16%" |    |   | | style="width:16%" |    | 
| Line 2,716: | 
Line 2,718: | 
|   | <br>  |   | <br>  | 
|   |  |   |  | 
| − | =Archive 3=  | + | =Archive 4=  | 
|   |  |   |  | 
|   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  | 
| Line 3,354: | 
Line 3,356: | 
|   | <br>  |   | <br>  | 
|   |  |   |  | 
| − | =Work Area 1=
  | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  | 
| − |    | + | |+ '''Table 3.  <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>'''  | 
| − | ==Propositional Forms on Two Variables==
  |   | 
| − |    |   | 
| − | To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math>  For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways.
  |   | 
| − |    |   | 
| − | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic.
  |   | 
| − |    |   | 
| − | ===Table 1===
  |   | 
| − |    |   | 
| − | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |   | 
| − | |+ '''Table 1.  Propositional Forms on Two Variables'''  |   | 
|   | |- style="background:ghostwhite; height:36px"  |   | |- style="background:ghostwhite; height:36px"  | 
| − | | <math>\mathcal{L}_1</math>
  |   | 
| − | | <math>\mathcal{L}_2</math>
  |   | 
| − | | <math>\mathcal{L}_3</math>
  |   | 
| − | | <math>\mathcal{L}_4</math>
  |   | 
| − | | <math>\mathcal{L}_5</math>
  |   | 
| − | | <math>\mathcal{L}_6</math>
  |   | 
| − | |- style="background:ghostwhite; height:48px"
  |   | 
|   | |    |   | |    | 
| − | |  | + | | <math>f\!</math>  | 
| − | {| align="right" style="background:ghostwhite; text-align:right"  | + | | <math>\operatorname{E}f|_{xy}</math>  | 
|   | + | | <math>\operatorname{E}f|_{x(y)}</math>  | 
|   | + | | <math>\operatorname{E}f|_{(x)y}</math>  | 
|   | + | | <math>\operatorname{E}f|_{(x)(y)}</math>  | 
|   | |-  |   | |-  | 
| − | | <math>x\!</math> :  | + | | <math>f_{0}\!</math>  | 
|   | + | | <math>(~)\!</math>  | 
|   | + | | <math>(~)\!</math>  | 
|   | + | | <math>(~)\!</math>  | 
|   | + | | <math>(~)\!</math>  | 
|   | + | | <math>(~)\!</math>  | 
|   | |-  |   | |-  | 
| − | | <math>y\!</math> :  | + | | <math>f_{1}\!</math>  | 
| − | |}  | + | | <math>(x)(y)\!</math>  | 
| − | |  | + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>  | 
| − | {| align="center" style="background:ghostwhite"  | + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>  | 
|   | + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>  | 
|   | |-  |   | |-  | 
| − | | 1 1 0 0  | + | | <math>f_{2}\!</math>  | 
| − | |-  | + | | <math>(x) y\!</math>  | 
| − | | 1 0 1 0  | + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>  | 
| − | |}  | + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>  | 
| − | |    | + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>  | 
| − | |    | + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>  | 
| − | |  
  |   | 
|   | |-  |   | |-  | 
| − | |  | + | | <math>f_{4}\!</math>  | 
| − | {| align="center"  | + | | <math>x (y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>  | 
|   | + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>  | 
|   | + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>  | 
|   | + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0}\!</math></p>  | + | | <math>f_{8}\!</math>  | 
|   | + | | <math>x y\!</math>  | 
|   | + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>  | 
|   | + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>  | 
|   | + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1}\!</math></p>  | + | | <math>f_{3}\!</math>  | 
| − | |-  | + | | <math>(x)\!</math>  | 
| − | | height="36px" | <p><math>f_{2}\!</math></p>  | + | | <math>\operatorname{d}x\!</math>  | 
|   | + | | <math>\operatorname{d}x\!</math>  | 
|   | + | | <math>(\operatorname{d}x)\!</math>  | 
|   | + | | <math>(\operatorname{d}x)\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{3}\!</math></p>  | + | | <math>f_{12}\!</math>  | 
|   | + | | <math>x\!</math>  | 
|   | + | | <math>(\operatorname{d}x)\!</math>  | 
|   | + | | <math>(\operatorname{d}x)\!</math>  | 
|   | + | | <math>\operatorname{d}x\!</math>  | 
|   | + | | <math>\operatorname{d}x\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{4}\!</math></p>  | + | | <math>f_{6}\!</math>  | 
|   | + | | <math>(x, y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>  | 
|   | + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>  | 
|   | + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>  | 
|   | + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{5}\!</math></p>  | + | | <math>f_{9}\!</math>  | 
|   | + | | <math>((x, y))\!</math>  | 
|   | + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>  | 
|   | + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>  | 
|   | + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{6}\!</math></p>  | + | | <math>f_{5}\!</math>  | 
| − | |-
  | + | | <math>(y)\!</math>  | 
| − | | height="36px" | <p><math>f_{7}\!</math></p>
  | + | | <math>\operatorname{d}y\!</math>  | 
| − | |}  | + | | <math>(\operatorname{d}y)\!</math>  | 
| − | |  | + | | <math>\operatorname{d}y\!</math>  | 
| − | {| align="center"  | + | | <math>(\operatorname{d}y)\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0000}\!</math></p>  | + | | <math>f_{10}\!</math>  | 
|   | + | | <math>y\!</math>  | 
|   | + | | <math>(\operatorname{d}y)\!</math>  | 
|   | + | | <math>\operatorname{d}y\!</math>  | 
|   | + | | <math>(\operatorname{d}y)\!</math>  | 
|   | + | | <math>\operatorname{d}y\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0001}\!</math></p>  | + | | <math>f_{7}\!</math>  | 
|   | + | | <math>(x y)\!</math>  | 
|   | + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>  | 
|   | + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>  | 
|   | + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0010}\!</math></p>  | + | | <math>f_{11}\!</math>  | 
| − | |-  | + | | <math>(x (y))\!</math>  | 
| − | | height="36px" | <p><math>f_{0011}\!</math></p>  | + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>  | 
|   | + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>  | 
|   | + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0100}\!</math></p>  | + | | <math>f_{13}\!</math>  | 
|   | + | | <math>((x) y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>  | 
|   | + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>  | 
|   | + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>  | 
|   | + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0101}\!</math></p>  | + | | <math>f_{14}\!</math>  | 
|   | + | | <math>((x)(y))\!</math>  | 
|   | + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>  | 
|   | + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>  | 
|   | + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>  | 
|   | + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0110}\!</math></p>  | + | | <math>f_{15}\!</math>  | 
| − | |-  | + | | <math>((~))\!</math>  | 
| − | | height="36px" | <p><math>f_{0111}\!</math></p>  | + | | <math>((~))\!</math>  | 
| − | |}  | + | | <math>((~))\!</math>  | 
| − | |  | + | | <math>((~))\!</math>  | 
| − | {| align="center"  | + | | <math>((~))\!</math>  | 
|   | + | |}<br>  | 
|   | + |    | 
|   | + | =Work Area 1=  | 
|   | + |    | 
|   | + | ==Propositional Forms on Two Variables==  | 
|   | + |    | 
|   | + | To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math>  For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways.  | 
|   | + |    | 
|   | + | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic.  | 
|   | + |    | 
|   | + | ===Table 1===  | 
|   | + |    | 
|   | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  | 
|   | + | |+ '''Table 1.  Propositional Forms on Two Variables'''  | 
|   | + | |- style="background:ghostwhite; height:36px"  | 
|   | + | | <math>\mathcal{L}_1</math>  | 
|   | + | | <math>\mathcal{L}_2</math>  | 
|   | + | | <math>\mathcal{L}_3</math>  | 
|   | + | | <math>\mathcal{L}_4</math>  | 
|   | + | | <math>\mathcal{L}_5</math>  | 
|   | + | | <math>\mathcal{L}_6</math>  | 
|   | + | |- style="background:ghostwhite; height:48px"  | 
|   | + | |    | 
|   | + | |  | 
|   | + | {| align="right" style="background:ghostwhite; text-align:right"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 0 0 0 0  | + | | <math>x\!</math> :  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 0 0 0 1  | + | | <math>y\!</math> :  | 
|   | + | |}  | 
|   | + | |  | 
|   | + | {| align="center" style="background:ghostwhite"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 0 0 1 0  | + | | 1 1 0 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 0 0 1 1  | + | | 1 0 1 0  | 
| − | |-  | + | |}  | 
| − | | height="36px" | 0 1 0 0  | + | |    | 
| − | |-  | + | |    | 
| − | | height="36px" | 0 1 0 1  | + | |    | 
|   | |-  |   | |-  | 
| − | | height="36px" | 0 1 1 0
  |   | 
| − | |-
  |   | 
| − | | height="36px" | 0 1 1 1
  |   | 
| − | |}
  |   | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(~)\!</math></p>  | + | | height="36px" | <p><math>f_{0}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x)(y)\!</math></p>  | + | | height="36px" | <p><math>f_{1}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x)\ y\!</math></p>  | + | | height="36px" | <p><math>f_{2}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x)\!</math></p>  | + | | height="36px" | <p><math>f_{3}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ (y)\!</math></p>  | + | | height="36px" | <p><math>f_{4}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(y)\!</math></p>  | + | | height="36px" | <p><math>f_{5}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x,\ y)\!</math></p>  | + | | height="36px" | <p><math>f_{6}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x\ y)\!</math></p>  | + | | height="36px" | <p><math>f_{7}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{false}</math></p>  | + | | height="36px" | <p><math>f_{0000}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p>  | + | | height="36px" | <p><math>f_{0001}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>y\ \operatorname{without}\ x</math></p>  | + | | height="36px" | <p><math>f_{0010}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not}\ x</math></p>  | + | | height="36px" | <p><math>f_{0011}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{without}\ y</math></p>  | + | | height="36px" | <p><math>f_{0100}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not}\ y</math></p>  | + | | height="36px" | <p><math>f_{0101}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{not~equal~to}\ y</math></p>  | + | | height="36px" | <p><math>f_{0110}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p>  | + | | height="36px" | <p><math>f_{0111}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>0\!</math></p>  | + | | height="36px" | 0 0 0 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot x \land \lnot y</math></p>  | + | | height="36px" | 0 0 0 1  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot x \land y</math></p>  | + | | height="36px" | 0 0 1 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot x</math></p>  | + | | height="36px" | 0 0 1 1  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \land \lnot y</math></p>  | + | | height="36px" | 0 1 0 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot y</math></p>  | + | | height="36px" | 0 1 0 1  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \ne y</math></p>  | + | | height="36px" | 0 1 1 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot x \lor \lnot y</math></p>  | + | | height="36px" | 0 1 1 1  | 
|   | |}  |   | |}  | 
| − | |-
  |   | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{8}\!</math></p>  | + | | height="36px" | <p><math>(~)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{9}\!</math></p>  | + | | height="36px" | <p><math>(x)(y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{10}\!</math></p>  | + | | height="36px" | <p><math>(x)\ y\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{11}\!</math></p>  | + | | height="36px" | <p><math>(x)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{12}\!</math></p>  | + | | height="36px" | <p><math>x\ (y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{13}\!</math></p>  | + | | height="36px" | <p><math>(y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{14}\!</math></p>  | + | | height="36px" | <p><math>(x,\ y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{15}\!</math></p>  | + | | height="36px" | <p><math>(x\ y)\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1000}\!</math></p>  | + | | height="36px" | <p><math>\operatorname{false}</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1001}\!</math></p>  | + | | height="36px" | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1010}\!</math></p>  | + | | height="36px" | <p><math>y\ \operatorname{without}\ x</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1011}\!</math></p>  | + | | height="36px" | <p><math>\operatorname{not}\ x</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1100}\!</math></p>  | + | | height="36px" | <p><math>x\ \operatorname{without}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1101}\!</math></p>  | + | | height="36px" | <p><math>\operatorname{not}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1110}\!</math></p>  | + | | height="36px" | <p><math>x\ \operatorname{not~equal~to}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1111}\!</math></p>  | + | | height="36px" | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 1 0 0 0  | + | | height="36px" | <p><math>0\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 1 0 0 1  | + | | height="36px" | <p><math>\lnot x \land \lnot y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 1 0 1 0  | + | | height="36px" | <p><math>\lnot x \land y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 1 0 1 1  | + | | height="36px" | <p><math>\lnot x</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 1 1 0 0  | + | | height="36px" | <p><math>x \land \lnot y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 1 1 0 1  | + | | height="36px" | <p><math>\lnot y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 1 1 1 0  | + | | height="36px" | <p><math>x \ne y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | 1 1 1 1  | + | | height="36px" | <p><math>\lnot x \lor \lnot y</math></p>  | 
|   | |}  |   | |}  | 
|   | + | |-  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ y\!</math></p>  | + | | height="36px" | <p><math>f_{8}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>((x,\ y))\!</math></p>  | + | | height="36px" | <p><math>f_{9}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>y\!</math></p>  | + | | height="36px" | <p><math>f_{10}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x\ (y))\!</math></p>  | + | | height="36px" | <p><math>f_{11}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\!</math></p>  | + | | height="36px" | <p><math>f_{12}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>((x)\ y)\!</math></p>  | + | | height="36px" | <p><math>f_{13}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>((x)(y))\!</math></p>  | + | | height="36px" | <p><math>f_{14}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>((~))\!</math></p>  | + | | height="36px" | <p><math>f_{15}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{and}\ y</math></p>  | + | | height="36px" | <p><math>f_{1000}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{equal~to}\ y</math></p>  | + | | height="36px" | <p><math>f_{1001}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>y\!</math></p>  | + | | height="36px" | <p><math>f_{1010}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p>  | + | | height="36px" | <p><math>f_{1011}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\!</math></p>  | + | | height="36px" | <p><math>f_{1100}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p>  | + | | height="36px" | <p><math>f_{1101}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{or}\ y</math></p>  | + | | height="36px" | <p><math>f_{1110}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{true}</math></p>  | + | | height="36px" | <p><math>f_{1111}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \land y</math></p>  | + | | height="36px" | 1 0 0 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x = y\!</math></p>  | + | | height="36px" | 1 0 0 1  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>y\!</math></p>  | + | | height="36px" | 1 0 1 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \Rightarrow y</math></p>  | + | | height="36px" | 1 0 1 1  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\!</math></p>  | + | | height="36px" | 1 1 0 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \Leftarrow y</math></p>  | + | | height="36px" | 1 1 0 1  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \lor y</math></p>  | + | | height="36px" | 1 1 1 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>1\!</math></p>  | + | | height="36px" | 1 1 1 1  | 
|   | |}  |   | |}  | 
| − | |}  | + | |  | 
| − | <br>
  | + | {| align="center"  | 
| − |    |   | 
| − | ===Table 2===
  |   | 
| − |    |   | 
| − | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |   | 
| − | |+ '''Table 2.  Propositional Forms on Two Variables'''
  |   | 
| − | |- style="background:ghostwhite; height:36px"
  |   | 
| − | | <math>\mathcal{L}_1</math>
  |   | 
| − | | <math>\mathcal{L}_2</math>
  |   | 
| − | | <math>\mathcal{L}_3</math>
  |   | 
| − | | <math>\mathcal{L}_4</math>
  |   | 
| − | | <math>\mathcal{L}_5</math>
  |   | 
| − | | <math>\mathcal{L}_6</math>
  |   | 
| − | |- style="background:ghostwhite; height:48px"
  |   | 
| − | |  
  |   | 
| − | |
  |   | 
| − | {| align="right" style="background:ghostwhite; text-align:right"
  |   | 
|   | |-  |   | |-  | 
| − | | <math>x\!</math> :  | + | | height="36px" | <p><math>x\ y\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | <math>y\!</math> :  | + | | height="36px" | <p><math>((x,\ y))\!</math></p>  | 
| − | |}
  |   | 
| − | |
  |   | 
| − | {| align="center" style="background:ghostwhite"
  |   | 
|   | |-  |   | |-  | 
| − | | 1 1 0 0  | + | | height="36px" | <p><math>y\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | 1 0 1 0  | + | | height="36px" | <p><math>(x\ (y))\!</math></p>  | 
| − | |}
  |   | 
| − | |  
  |   | 
| − | |  
  |   | 
| − | |  
  |   | 
| − | |- style="height:36px"
  |   | 
| − | | <p><math>f_{0}\!</math></p>  |   | 
| − | | <p><math>f_{0000}\!</math></p>
  |   | 
| − | | <p>0 0 0 0</p>
  |   | 
| − | | <p><math>(~)\!</math></p>
  |   | 
| − | | <p><math>\operatorname{false}</math></p>
  |   | 
| − | | <p><math>1\!</math></p>
  |   | 
|   | |-  |   | |-  | 
| − | |  | + | | height="36px" | <p><math>x\!</math></p>  | 
| − | {| align="center"
  |   | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1}\!</math></p>  | + | | height="36px" | <p><math>((x)\ y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{2}\!</math></p>  | + | | height="36px" | <p><math>((x)(y))\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{4}\!</math></p>  | + | | height="36px" | <p><math>((~))\!</math></p>  | 
| − | |-
  |   | 
| − | | height="36px" | <p><math>f_{8}\!</math></p>
  |   | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0001}\!</math></p>  | + | | height="36px" | <p><math>x\ \operatorname{and}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0010}\!</math></p>  | + | | height="36px" | <p><math>x\ \operatorname{equal~to}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0100}\!</math></p>  | + | | height="36px" | <p><math>y\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1000}\!</math></p>  | + | | height="36px" | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p>  | 
| − | |}
  |   | 
| − | |
  |   | 
| − | {| align="center"
  |   | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>0 0 0 1</p>  | + | | height="36px" | <p><math>x\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>0 0 1 0</p>  | + | | height="36px" | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>0 1 0 0</p>  | + | | height="36px" | <p><math>x\ \operatorname{or}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>1 0 0 0</p>  | + | | height="36px" | <p><math>\operatorname{true}</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x)(y)\!</math></p>  | + | | height="36px" | <p><math>x \land y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x)\ y\!</math></p>  | + | | height="36px" | <p><math>x = y\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ (y)\!</math></p>  | + | | height="36px" | <p><math>y\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ y\!</math></p>  | + | | height="36px" | <p><math>x \Rightarrow y</math></p>  | 
| − | |}
  |   | 
| − | |
  |   | 
| − | {| align="center"
  |   | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p>  | + | | height="36px" | <p><math>x\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>y\ \operatorname{without}\ x</math></p>  | + | | height="36px" | <p><math>x \Leftarrow y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{without}\ y</math></p>  | + | | height="36px" | <p><math>x \lor y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{and}\ y</math></p>  | + | | height="36px" | <p><math>1\!</math></p>  | 
|   | + | |}  | 
|   | |}  |   | |}  | 
|   | + | <br>  | 
|   | + |  | 
|   | + | ===Table 2===  | 
|   | + |  | 
|   | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  | 
|   | + | |+ '''Table 2.  Propositional Forms on Two Variables'''  | 
|   | + | |- style="background:ghostwhite; height:36px"  | 
|   | + | | <math>\mathcal{L}_1</math>  | 
|   | + | | <math>\mathcal{L}_2</math>  | 
|   | + | | <math>\mathcal{L}_3</math>  | 
|   | + | | <math>\mathcal{L}_4</math>  | 
|   | + | | <math>\mathcal{L}_5</math>  | 
|   | + | | <math>\mathcal{L}_6</math>  | 
|   | + | |- style="background:ghostwhite; height:48px"  | 
|   | + | |    | 
|   | |  |   | |  | 
| − | {| align="center"  | + | {| align="right" style="background:ghostwhite; text-align:right"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot x \land \lnot y</math></p>
  | + | | <math>x\!</math> :  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot x \land y</math></p>
  | + | | <math>y\!</math> :  | 
|   | + | |}  | 
|   | + | |  | 
|   | + | {| align="center" style="background:ghostwhite"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \land \lnot y</math></p>  | + | | 1 1 0 0  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \land y</math></p>  | + | | 1 0 1 0  | 
|   | |}  |   | |}  | 
|   | + | |    | 
|   | + | |    | 
|   | + | |    | 
|   | + | |- style="height:36px"  | 
|   | + | | <p><math>f_{0}\!</math></p>  | 
|   | + | | <p><math>f_{0000}\!</math></p>  | 
|   | + | | <p>0 0 0 0</p>  | 
|   | + | | <p><math>(~)\!</math></p>  | 
|   | + | | <p><math>\operatorname{false}</math></p>  | 
|   | + | | <p><math>1\!</math></p>  | 
|   | |-  |   | |-  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{3}\!</math></p>  | + | | height="36px" | <p><math>f_{1}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{12}\!</math></p>  | + | | height="36px" | <p><math>f_{2}\!</math></p>  | 
| − | |}
  |   | 
| − | |
  |   | 
| − | {| align="center"
  |   | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0011}\!</math></p>  | + | | height="36px" | <p><math>f_{4}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1100}\!</math></p>  | + | | height="36px" | <p><math>f_{8}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>0 0 1 1</p>  | + | | height="36px" | <p><math>f_{0001}\!</math></p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p><math>f_{0010}\!</math></p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p><math>f_{0100}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>1 1 0 0</p>  | + | | height="36px" | <p><math>f_{1000}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x)\!</math></p>  | + | | height="36px" | <p>0 0 0 1</p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p>0 0 1 0</p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p>0 1 0 0</p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\!</math></p>  | + | | height="36px" | <p>1 0 0 0</p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not}\ x</math></p>  | + | | height="36px" | <p><math>(x)(y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\!</math></p>  | + | | height="36px" | <p><math>(x)\ y\!</math></p>  | 
| − | |}
  |   | 
| − | |
  |   | 
| − | {| align="center"
  |   | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot x</math></p>  | + | | height="36px" | <p><math>x\ (y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\!</math></p>  | + | | height="36px" | <p><math>x\ y\!</math></p>  | 
|   | |}  |   | |}  | 
| − | |-
  |   | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{6}\!</math></p>  | + | | height="36px" | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p><math>y\ \operatorname{without}\ x</math></p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p><math>x\ \operatorname{without}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{9}\!</math></p>  | + | | height="36px" | <p><math>x\ \operatorname{and}\ y</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0110}\!</math></p>  | + | | height="36px" | <p><math>\lnot x \land \lnot y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1001}\!</math></p>  | + | | height="36px" | <p><math>\lnot x \land y</math></p>  | 
| − | |}
  |   | 
| − | |
  |   | 
| − | {| align="center"
  |   | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>0 1 1 0</p>  | + | | height="36px" | <p><math>x \land \lnot y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>1 0 0 1</p>  | + | | height="36px" | <p><math>x \land y</math></p>  | 
|   | |}  |   | |}  | 
|   | + | |-  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x,\ y)\!</math></p>  | + | | height="36px" | <p><math>f_{3}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>((x,\ y))\!</math></p>  | + | | height="36px" | <p><math>f_{12}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{not~equal~to}\ y</math></p>  | + | | height="36px" | <p><math>f_{0011}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x\ \operatorname{equal~to}\ y</math></p>  | + | | height="36px" | <p><math>f_{1100}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \ne y</math></p>  | + | | height="36px" | <p>0 0 1 1</p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x = y\!</math></p>  | + | | height="36px" | <p>1 1 0 0</p>  | 
|   | |}  |   | |}  | 
| − | |-
  |   | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{5}\!</math></p>  | + | | height="36px" | <p><math>(x)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{10}\!</math></p>  | + | | height="36px" | <p><math>x\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0101}\!</math></p>  | + | | height="36px" | <p><math>\operatorname{not}\ x</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1010}\!</math></p>  | + | | height="36px" | <p><math>x\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>0 1 0 1</p>  | + | | height="36px" | <p><math>\lnot x</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>1 0 1 0</p>  | + | | height="36px" | <p><math>x\!</math></p>  | 
|   | |}  |   | |}  | 
|   | + | |-  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(y)\!</math></p>  | + | | height="36px" | <p><math>f_{6}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>y\!</math></p>  | + | | height="36px" | <p><math>f_{9}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not}\ y</math></p>  | + | | height="36px" | <p><math>f_{0110}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>y\!</math></p>  | + | | height="36px" | <p><math>f_{1001}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot y</math></p>  | + | | height="36px" | <p>0 1 1 0</p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>y\!</math></p>  | + | | height="36px" | <p>1 0 0 1</p>  | 
|   | |}  |   | |}  | 
| − | |-
  |   | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{7}\!</math></p>  | + | | height="36px" | <p><math>(x,\ y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{11}\!</math></p>  | + | | height="36px" | <p><math>((x,\ y))\!</math></p>  | 
|   | + | |}  | 
|   | + | |  | 
|   | + | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{13}\!</math></p>  | + | | height="36px" | <p><math>x\ \operatorname{not~equal~to}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{14}\!</math></p>  | + | | height="36px" | <p><math>x\ \operatorname{equal~to}\ y</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{0111}\!</math></p>  | + | | height="36px" | <p><math>x \ne y</math></p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p><math>x = y\!</math></p>  | 
|   | + | |}  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1011}\!</math></p>  | + | |  | 
|   | + | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1101}\!</math></p>  | + | | height="36px" | <p><math>f_{5}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>f_{1110}\!</math></p>  | + | | height="36px" | <p><math>f_{10}\!</math></p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>0 1 1 1</p>  | + | | height="36px" | <p><math>f_{0101}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>1 0 1 1</p>  | + | | height="36px" | <p><math>f_{1010}\!</math></p>  | 
|   | + | |}  | 
|   | + | |  | 
|   | + | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>1 1 0 1</p>  | + | | height="36px" | <p>0 1 0 1</p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p>1 1 1 0</p>  | + | | height="36px" | <p>1 0 1 0</p>  | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x\ y)\!</math></p>  | + | | height="36px" | <p><math>(y)\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>(x\ (y))\!</math></p>  | + | | height="36px" | <p><math>y\!</math></p>  | 
| − | |-
  |   | 
| − | | height="36px" | <p><math>((x)\ y)\!</math></p>
  |   | 
| − | |-
  |   | 
| − | | height="36px" | <p><math>((x)(y))\!</math></p>
  |   | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p>  | + | | height="36px" | <p><math>\operatorname{not}\ y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p>  | + | | height="36px" | <p><math>y\!</math></p>  | 
| − | |-
  |   | 
| − | | height="36px" | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p>
  |   | 
| − | |-
  |   | 
| − | | height="36px" | <p><math>x\ \operatorname{or}\ y</math></p>
  |   | 
|   | |}  |   | |}  | 
|   | |  |   | |  | 
|   | {| align="center"  |   | {| align="center"  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>\lnot x \lor \lnot y</math></p>  | + | | height="36px" | <p><math>\lnot y</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \Rightarrow y</math></p>  | + | | height="36px" | <p><math>y\!</math></p>  | 
|   | + | |}  | 
|   | + | |-  | 
|   | + | |  | 
|   | + | {| align="center"  | 
|   | + | |-  | 
|   | + | | height="36px" | <p><math>f_{7}\!</math></p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p><math>f_{11}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \Leftarrow y</math></p>  | + | | height="36px" | <p><math>f_{13}\!</math></p>  | 
|   | |-  |   | |-  | 
| − | | height="36px" | <p><math>x \lor y</math></p>  | + | | height="36px" | <p><math>f_{14}\!</math></p>  | 
|   | |}  |   | |}  | 
| − | |- style="height:36px"  | + | |  | 
| − | | <p><math>f_{15}\!</math></p>  | + | {| align="center"  | 
| − | | <p><math>f_{1111}\!</math></p>  | + | |-  | 
| − | | <p>1 1 1 1</p>  | + | | height="36px" | <p><math>f_{0111}\!</math></p>  | 
| − | | <p><math>((~))\!</math></p>  | + | |-  | 
| − | | <p><math>\operatorname{true}</math></p>  | + | | height="36px" | <p><math>f_{1011}\!</math></p>  | 
| − | | <p><math>1\!</math></p>
  | + | |-  | 
|   | + | | height="36px" | <p><math>f_{1101}\!</math></p>  | 
|   | + | |-  | 
|   | + | | height="36px" | <p><math>f_{1110}\!</math></p>  | 
|   | |}  |   | |}  | 
| − | <br>
  | + | |  | 
| − |    | + | {| align="center"  | 
| − | ===Table 3===
  |   | 
| − |    |   | 
| − | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions.  Notice that the functions are given in a different order, here being collected into a set of seven natural classes.
  |   | 
| − |    |   | 
| − | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |   | 
| − | |+ '''Table 3.  <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>'''
  |   | 
| − | |- style="background:ghostwhite; height:36px"
  |   | 
| − | |  
  |   | 
| − | | <math>f\!</math>
  |   | 
| − | | <math>\operatorname{E}f|_{xy}</math>
  |   | 
| − | | <math>\operatorname{E}f|_{x(y)}</math>
  |   | 
| − | | <math>\operatorname{E}f|_{(x)y}</math>
  |   | 
| − | | <math>\operatorname{E}f|_{(x)(y)}</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{0}\!</math>  | + | | height="36px" | <p>0 1 1 1</p>  | 
| − | | <math>(~)\!</math>
  |   | 
| − | | <math>(~)\!</math>
  |   | 
| − | | <math>(~)\!</math>
  |   | 
| − | | <math>(~)\!</math>
  |   | 
| − | | <math>(~)\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{1}\!</math>  | + | | height="36px" | <p>1 0 1 1</p>  | 
| − | | <math>(x)(y)\!</math>  | + | |-  | 
| − | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>  | + | | height="36px" | <p>1 1 0 1</p>  | 
| − | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>  |   | 
| − | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>
  |   | 
| − | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{2}\!</math>  | + | | height="36px" | <p>1 1 1 0</p>  | 
| − | | <math>(x) y\!</math>  | + | |}  | 
| − | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>  | + | |  | 
| − | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>  | + | {| align="center"  | 
| − | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>
  |   | 
| − | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{4}\!</math>  | + | | height="36px" | <p><math>(x\ y)\!</math></p>  | 
| − | | <math>x (y)\!</math>
  |   | 
| − | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>  |   | 
| − | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>
  |   | 
| − | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>
  |   | 
| − | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{8}\!</math>  | + | | height="36px" | <p><math>(x\ (y))\!</math></p>  | 
| − | | <math>x y\!</math>  |   | 
| − | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>
  |   | 
| − | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>
  |   | 
| − | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>
  |   | 
| − | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{3}\!</math>  | + | | height="36px" | <p><math>((x)\ y)\!</math></p>  | 
| − | | <math>(x)\!</math>
  |   | 
| − | | <math>\operatorname{d}x\!</math>
  |   | 
| − | | <math>\operatorname{d}x\!</math>
  |   | 
| − | | <math>(\operatorname{d}x)\!</math>
  |   | 
| − | | <math>(\operatorname{d}x)\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{12}\!</math>  | + | | height="36px" | <p><math>((x)(y))\!</math></p>  | 
| − | | <math>x\!</math>  | + | |}  | 
| − | | <math>(\operatorname{d}x)\!</math>
  | + | |  | 
| − | | <math>(\operatorname{d}x)\!</math>
  | + | {| align="center"  | 
| − | | <math>\operatorname{d}x\!</math>  |   | 
| − | | <math>\operatorname{d}x\!</math>  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{6}\!</math>  | + | | height="36px" | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p>  | 
| − | | <math>(x, y)\!</math>  |   | 
| − | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>
  |   | 
| − | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>
  |   | 
| − | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>
  |   | 
| − | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{9}\!</math>  | + | | height="36px" | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p>  | 
| − | | <math>((x, y))\!</math>  | + | |-  | 
| − | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>
  | + | | height="36px" | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p>  | 
| − | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>  |   | 
| − | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>
  |   | 
| − | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{5}\!</math>  | + | | height="36px" | <p><math>x\ \operatorname{or}\ y</math></p>  | 
| − | | <math>(y)\!</math>
  | + | |}  | 
| − | | <math>\operatorname{d}y\!</math>
  | + | |  | 
| − | | <math>(\operatorname{d}y)\!</math>
  | + | {| align="center"  | 
| − | | <math>\operatorname{d}y\!</math>  |   | 
| − | | <math>(\operatorname{d}y)\!</math>  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{10}\!</math>  | + | | height="36px" | <p><math>\lnot x \lor \lnot y</math></p>  | 
| − | | <math>y\!</math>  |   | 
| − | | <math>(\operatorname{d}y)\!</math>
  |   | 
| − | | <math>\operatorname{d}y\!</math>
  |   | 
| − | | <math>(\operatorname{d}y)\!</math>
  |   | 
| − | | <math>\operatorname{d}y\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{7}\!</math>  | + | | height="36px" | <p><math>x \Rightarrow y</math></p>  | 
| − | | <math>(x y)\!</math>
  |   | 
| − | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>
  |   | 
| − | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>  |   | 
| − | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>
  |   | 
| − | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{11}\!</math>  | + | | height="36px" | <p><math>x \Leftarrow y</math></p>  | 
| − | | <math>(x (y))\!</math>
  |   | 
| − | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>
  |   | 
| − | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>  |   | 
| − | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>
  |   | 
| − | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>
  |   | 
|   | |-  |   | |-  | 
| − | | <math>f_{13}\!</math>  | + | | height="36px" | <p><math>x \lor y</math></p>  | 
| − | | <math>((x) y)\!</math>  | + | |}  | 
| − | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>
  | + | |- style="height:36px"  | 
| − | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>
  | + | | <p><math>f_{15}\!</math></p>  | 
| − | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>  | + | | <p><math>f_{1111}\!</math></p>  | 
| − | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>
  | + | | <p>1 1 1 1</p>  | 
| − | |-  | + | | <p><math>((~))\!</math></p>  | 
| − | | <math>f_{14}\!</math>  | + | | <p><math>\operatorname{true}</math></p>  | 
| − | | <math>((x)(y))\!</math>
  | + | | <p><math>1\!</math></p>  | 
| − | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>  | + | |}  | 
| − | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>
  | + | <br>  | 
| − | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>  | + |    | 
| − | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>  | + | ===Table 3===  | 
| − | |-
  |   | 
| − | | <math>f_{15}\!</math>
  |   | 
| − | | <math>((~))\!</math>  |   | 
| − | | <math>((~))\!</math>
  |   | 
| − | | <math>((~))\!</math>  |   | 
| − | | <math>((~))\!</math>
  |   | 
| − | | <math>((~))\!</math>
  |   | 
| − | |}<br>  |   | 
|   |  |   |  | 
| − | ===Table 3 : Work Area===
  | + | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions.  Notice that the functions are given in a different order, here being collected into a set of seven natural classes.  | 
|   |  |   |  | 
|   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |   | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"  |