Line 2,317: |
Line 2,317: |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 1. Propositional Forms on Two Variables''' | + | |+ '''Propositional Forms on Two Variables''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | style="width:16%" | <math>\mathcal{L}_1</math> | | | style="width:16%" | <math>\mathcal{L}_1</math> |
Line 2,453: |
Line 2,453: |
| |} | | |} |
| <br> | | <br> |
| + | |
| + | =Archive 3= |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 1. Propositional Forms on Two Variables''' | + | |+ '''Propositional Forms on Two Variables''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | style="width:16%" | <math>\mathcal{L}_1</math> | | | style="width:16%" | <math>\mathcal{L}_1</math> |
Line 2,593: |
Line 2,595: |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 2. <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' | + | |+ '''<math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | style="width:16%" | | | | style="width:16%" | |
Line 2,716: |
Line 2,718: |
| <br> | | <br> |
| | | |
− | =Archive 3= | + | =Archive 4= |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
Line 3,354: |
Line 3,356: |
| <br> | | <br> |
| | | |
− | =Work Area 1=
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | | + | |+ '''Table 3. <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' |
− | ==Propositional Forms on Two Variables==
| |
− | | |
− | To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways.
| |
− | | |
− | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic.
| |
− | | |
− | ===Table 1===
| |
− | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | |
− | |+ '''Table 1. Propositional Forms on Two Variables''' | |
| |- style="background:ghostwhite; height:36px" | | |- style="background:ghostwhite; height:36px" |
− | | <math>\mathcal{L}_1</math>
| |
− | | <math>\mathcal{L}_2</math>
| |
− | | <math>\mathcal{L}_3</math>
| |
− | | <math>\mathcal{L}_4</math>
| |
− | | <math>\mathcal{L}_5</math>
| |
− | | <math>\mathcal{L}_6</math>
| |
− | |- style="background:ghostwhite; height:48px"
| |
| | | | | |
− | | | + | | <math>f\!</math> |
− | {| align="right" style="background:ghostwhite; text-align:right" | + | | <math>\operatorname{E}f|_{xy}</math> |
| + | | <math>\operatorname{E}f|_{x(y)}</math> |
| + | | <math>\operatorname{E}f|_{(x)y}</math> |
| + | | <math>\operatorname{E}f|_{(x)(y)}</math> |
| |- | | |- |
− | | <math>x\!</math> : | + | | <math>f_{0}\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| |- | | |- |
− | | <math>y\!</math> : | + | | <math>f_{1}\!</math> |
− | |} | + | | <math>(x)(y)\!</math> |
− | | | + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> |
− | {| align="center" style="background:ghostwhite" | + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math> |
| |- | | |- |
− | | 1 1 0 0 | + | | <math>f_{2}\!</math> |
− | |- | + | | <math>(x) y\!</math> |
− | | 1 0 1 0 | + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> |
− | |} | + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> |
− | | | + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math> |
− | | | + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> |
− | |
| |
| |- | | |- |
− | | | + | | <math>f_{4}\!</math> |
− | {| align="center" | + | | <math>x (y)\!</math> |
| + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> |
| + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0}\!</math></p> | + | | <math>f_{8}\!</math> |
| + | | <math>x y\!</math> |
| + | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> |
| + | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1}\!</math></p> | + | | <math>f_{3}\!</math> |
− | |- | + | | <math>(x)\!</math> |
− | | height="36px" | <p><math>f_{2}\!</math></p> | + | | <math>\operatorname{d}x\!</math> |
| + | | <math>\operatorname{d}x\!</math> |
| + | | <math>(\operatorname{d}x)\!</math> |
| + | | <math>(\operatorname{d}x)\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{3}\!</math></p> | + | | <math>f_{12}\!</math> |
| + | | <math>x\!</math> |
| + | | <math>(\operatorname{d}x)\!</math> |
| + | | <math>(\operatorname{d}x)\!</math> |
| + | | <math>\operatorname{d}x\!</math> |
| + | | <math>\operatorname{d}x\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{4}\!</math></p> | + | | <math>f_{6}\!</math> |
| + | | <math>(x, y)\!</math> |
| + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math> |
| + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{5}\!</math></p> | + | | <math>f_{9}\!</math> |
| + | | <math>((x, y))\!</math> |
| + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{6}\!</math></p> | + | | <math>f_{5}\!</math> |
− | |-
| + | | <math>(y)\!</math> |
− | | height="36px" | <p><math>f_{7}\!</math></p>
| + | | <math>\operatorname{d}y\!</math> |
− | |} | + | | <math>(\operatorname{d}y)\!</math> |
− | | | + | | <math>\operatorname{d}y\!</math> |
− | {| align="center" | + | | <math>(\operatorname{d}y)\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0000}\!</math></p> | + | | <math>f_{10}\!</math> |
| + | | <math>y\!</math> |
| + | | <math>(\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}y\!</math> |
| + | | <math>(\operatorname{d}y)\!</math> |
| + | | <math>\operatorname{d}y\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0001}\!</math></p> | + | | <math>f_{7}\!</math> |
| + | | <math>(x y)\!</math> |
| + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> |
| + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0010}\!</math></p> | + | | <math>f_{11}\!</math> |
− | |- | + | | <math>(x (y))\!</math> |
− | | height="36px" | <p><math>f_{0011}\!</math></p> | + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0100}\!</math></p> | + | | <math>f_{13}\!</math> |
| + | | <math>((x) y)\!</math> |
| + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math> |
| + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> |
| + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0101}\!</math></p> | + | | <math>f_{14}\!</math> |
| + | | <math>((x)(y))\!</math> |
| + | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> |
| + | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math> |
| + | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> |
| + | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0110}\!</math></p> | + | | <math>f_{15}\!</math> |
− | |- | + | | <math>((~))\!</math> |
− | | height="36px" | <p><math>f_{0111}\!</math></p> | + | | <math>((~))\!</math> |
− | |} | + | | <math>((~))\!</math> |
− | | | + | | <math>((~))\!</math> |
− | {| align="center" | + | | <math>((~))\!</math> |
| + | |}<br> |
| + | |
| + | =Work Area 1= |
| + | |
| + | ==Propositional Forms on Two Variables== |
| + | |
| + | To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways. |
| + | |
| + | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. |
| + | |
| + | ===Table 1=== |
| + | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 1. Propositional Forms on Two Variables''' |
| + | |- style="background:ghostwhite; height:36px" |
| + | | <math>\mathcal{L}_1</math> |
| + | | <math>\mathcal{L}_2</math> |
| + | | <math>\mathcal{L}_3</math> |
| + | | <math>\mathcal{L}_4</math> |
| + | | <math>\mathcal{L}_5</math> |
| + | | <math>\mathcal{L}_6</math> |
| + | |- style="background:ghostwhite; height:48px" |
| + | | |
| + | | |
| + | {| align="right" style="background:ghostwhite; text-align:right" |
| |- | | |- |
− | | height="36px" | 0 0 0 0 | + | | <math>x\!</math> : |
| |- | | |- |
− | | height="36px" | 0 0 0 1 | + | | <math>y\!</math> : |
| + | |} |
| + | | |
| + | {| align="center" style="background:ghostwhite" |
| |- | | |- |
− | | height="36px" | 0 0 1 0 | + | | 1 1 0 0 |
| |- | | |- |
− | | height="36px" | 0 0 1 1 | + | | 1 0 1 0 |
− | |- | + | |} |
− | | height="36px" | 0 1 0 0 | + | | |
− | |- | + | | |
− | | height="36px" | 0 1 0 1 | + | | |
| |- | | |- |
− | | height="36px" | 0 1 1 0
| |
− | |-
| |
− | | height="36px" | 0 1 1 1
| |
− | |}
| |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>(~)\!</math></p> | + | | height="36px" | <p><math>f_{0}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(x)(y)\!</math></p> | + | | height="36px" | <p><math>f_{1}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(x)\ y\!</math></p> | + | | height="36px" | <p><math>f_{2}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(x)\!</math></p> | + | | height="36px" | <p><math>f_{3}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ (y)\!</math></p> | + | | height="36px" | <p><math>f_{4}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(y)\!</math></p> | + | | height="36px" | <p><math>f_{5}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(x,\ y)\!</math></p> | + | | height="36px" | <p><math>f_{6}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(x\ y)\!</math></p> | + | | height="36px" | <p><math>f_{7}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{false}</math></p> | + | | height="36px" | <p><math>f_{0000}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p> | + | | height="36px" | <p><math>f_{0001}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>y\ \operatorname{without}\ x</math></p> | + | | height="36px" | <p><math>f_{0010}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not}\ x</math></p> | + | | height="36px" | <p><math>f_{0011}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{without}\ y</math></p> | + | | height="36px" | <p><math>f_{0100}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not}\ y</math></p> | + | | height="36px" | <p><math>f_{0101}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{not~equal~to}\ y</math></p> | + | | height="36px" | <p><math>f_{0110}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p> | + | | height="36px" | <p><math>f_{0111}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>0\!</math></p> | + | | height="36px" | 0 0 0 0 |
| |- | | |- |
− | | height="36px" | <p><math>\lnot x \land \lnot y</math></p> | + | | height="36px" | 0 0 0 1 |
| |- | | |- |
− | | height="36px" | <p><math>\lnot x \land y</math></p> | + | | height="36px" | 0 0 1 0 |
| |- | | |- |
− | | height="36px" | <p><math>\lnot x</math></p> | + | | height="36px" | 0 0 1 1 |
| |- | | |- |
− | | height="36px" | <p><math>x \land \lnot y</math></p> | + | | height="36px" | 0 1 0 0 |
| |- | | |- |
− | | height="36px" | <p><math>\lnot y</math></p> | + | | height="36px" | 0 1 0 1 |
| |- | | |- |
− | | height="36px" | <p><math>x \ne y</math></p> | + | | height="36px" | 0 1 1 0 |
| |- | | |- |
− | | height="36px" | <p><math>\lnot x \lor \lnot y</math></p> | + | | height="36px" | 0 1 1 1 |
| |} | | |} |
− | |-
| |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{8}\!</math></p> | + | | height="36px" | <p><math>(~)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{9}\!</math></p> | + | | height="36px" | <p><math>(x)(y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{10}\!</math></p> | + | | height="36px" | <p><math>(x)\ y\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{11}\!</math></p> | + | | height="36px" | <p><math>(x)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{12}\!</math></p> | + | | height="36px" | <p><math>x\ (y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{13}\!</math></p> | + | | height="36px" | <p><math>(y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{14}\!</math></p> | + | | height="36px" | <p><math>(x,\ y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{15}\!</math></p> | + | | height="36px" | <p><math>(x\ y)\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{1000}\!</math></p> | + | | height="36px" | <p><math>\operatorname{false}</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1001}\!</math></p> | + | | height="36px" | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1010}\!</math></p> | + | | height="36px" | <p><math>y\ \operatorname{without}\ x</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1011}\!</math></p> | + | | height="36px" | <p><math>\operatorname{not}\ x</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1100}\!</math></p> | + | | height="36px" | <p><math>x\ \operatorname{without}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1101}\!</math></p> | + | | height="36px" | <p><math>\operatorname{not}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1110}\!</math></p> | + | | height="36px" | <p><math>x\ \operatorname{not~equal~to}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1111}\!</math></p> | + | | height="36px" | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | 1 0 0 0 | + | | height="36px" | <p><math>0\!</math></p> |
| |- | | |- |
− | | height="36px" | 1 0 0 1 | + | | height="36px" | <p><math>\lnot x \land \lnot y</math></p> |
| |- | | |- |
− | | height="36px" | 1 0 1 0 | + | | height="36px" | <p><math>\lnot x \land y</math></p> |
| |- | | |- |
− | | height="36px" | 1 0 1 1 | + | | height="36px" | <p><math>\lnot x</math></p> |
| |- | | |- |
− | | height="36px" | 1 1 0 0 | + | | height="36px" | <p><math>x \land \lnot y</math></p> |
| |- | | |- |
− | | height="36px" | 1 1 0 1 | + | | height="36px" | <p><math>\lnot y</math></p> |
| |- | | |- |
− | | height="36px" | 1 1 1 0 | + | | height="36px" | <p><math>x \ne y</math></p> |
| |- | | |- |
− | | height="36px" | 1 1 1 1 | + | | height="36px" | <p><math>\lnot x \lor \lnot y</math></p> |
| |} | | |} |
| + | |- |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>x\ y\!</math></p> | + | | height="36px" | <p><math>f_{8}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>((x,\ y))\!</math></p> | + | | height="36px" | <p><math>f_{9}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>y\!</math></p> | + | | height="36px" | <p><math>f_{10}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(x\ (y))\!</math></p> | + | | height="36px" | <p><math>f_{11}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\!</math></p> | + | | height="36px" | <p><math>f_{12}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>((x)\ y)\!</math></p> | + | | height="36px" | <p><math>f_{13}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>((x)(y))\!</math></p> | + | | height="36px" | <p><math>f_{14}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>((~))\!</math></p> | + | | height="36px" | <p><math>f_{15}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{and}\ y</math></p> | + | | height="36px" | <p><math>f_{1000}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{equal~to}\ y</math></p> | + | | height="36px" | <p><math>f_{1001}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>y\!</math></p> | + | | height="36px" | <p><math>f_{1010}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p> | + | | height="36px" | <p><math>f_{1011}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\!</math></p> | + | | height="36px" | <p><math>f_{1100}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p> | + | | height="36px" | <p><math>f_{1101}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{or}\ y</math></p> | + | | height="36px" | <p><math>f_{1110}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{true}</math></p> | + | | height="36px" | <p><math>f_{1111}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>x \land y</math></p> | + | | height="36px" | 1 0 0 0 |
| |- | | |- |
− | | height="36px" | <p><math>x = y\!</math></p> | + | | height="36px" | 1 0 0 1 |
| |- | | |- |
− | | height="36px" | <p><math>y\!</math></p> | + | | height="36px" | 1 0 1 0 |
| |- | | |- |
− | | height="36px" | <p><math>x \Rightarrow y</math></p> | + | | height="36px" | 1 0 1 1 |
| |- | | |- |
− | | height="36px" | <p><math>x\!</math></p> | + | | height="36px" | 1 1 0 0 |
| |- | | |- |
− | | height="36px" | <p><math>x \Leftarrow y</math></p> | + | | height="36px" | 1 1 0 1 |
| |- | | |- |
− | | height="36px" | <p><math>x \lor y</math></p> | + | | height="36px" | 1 1 1 0 |
| |- | | |- |
− | | height="36px" | <p><math>1\!</math></p> | + | | height="36px" | 1 1 1 1 |
| |} | | |} |
− | |} | + | | |
− | <br>
| + | {| align="center" |
− | | |
− | ===Table 2===
| |
− | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | |
− | |+ '''Table 2. Propositional Forms on Two Variables'''
| |
− | |- style="background:ghostwhite; height:36px"
| |
− | | <math>\mathcal{L}_1</math>
| |
− | | <math>\mathcal{L}_2</math>
| |
− | | <math>\mathcal{L}_3</math>
| |
− | | <math>\mathcal{L}_4</math>
| |
− | | <math>\mathcal{L}_5</math>
| |
− | | <math>\mathcal{L}_6</math>
| |
− | |- style="background:ghostwhite; height:48px"
| |
− | |
| |
− | |
| |
− | {| align="right" style="background:ghostwhite; text-align:right"
| |
| |- | | |- |
− | | <math>x\!</math> : | + | | height="36px" | <p><math>x\ y\!</math></p> |
| |- | | |- |
− | | <math>y\!</math> : | + | | height="36px" | <p><math>((x,\ y))\!</math></p> |
− | |}
| |
− | |
| |
− | {| align="center" style="background:ghostwhite"
| |
| |- | | |- |
− | | 1 1 0 0 | + | | height="36px" | <p><math>y\!</math></p> |
| |- | | |- |
− | | 1 0 1 0 | + | | height="36px" | <p><math>(x\ (y))\!</math></p> |
− | |}
| |
− | |
| |
− | |
| |
− | |
| |
− | |- style="height:36px"
| |
− | | <p><math>f_{0}\!</math></p> | |
− | | <p><math>f_{0000}\!</math></p>
| |
− | | <p>0 0 0 0</p>
| |
− | | <p><math>(~)\!</math></p>
| |
− | | <p><math>\operatorname{false}</math></p>
| |
− | | <p><math>1\!</math></p>
| |
| |- | | |- |
− | | | + | | height="36px" | <p><math>x\!</math></p> |
− | {| align="center"
| |
| |- | | |- |
− | | height="36px" | <p><math>f_{1}\!</math></p> | + | | height="36px" | <p><math>((x)\ y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{2}\!</math></p> | + | | height="36px" | <p><math>((x)(y))\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{4}\!</math></p> | + | | height="36px" | <p><math>((~))\!</math></p> |
− | |-
| |
− | | height="36px" | <p><math>f_{8}\!</math></p>
| |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{0001}\!</math></p> | + | | height="36px" | <p><math>x\ \operatorname{and}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0010}\!</math></p> | + | | height="36px" | <p><math>x\ \operatorname{equal~to}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{0100}\!</math></p> | + | | height="36px" | <p><math>y\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1000}\!</math></p> | + | | height="36px" | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p> |
− | |}
| |
− | |
| |
− | {| align="center"
| |
| |- | | |- |
− | | height="36px" | <p>0 0 0 1</p> | + | | height="36px" | <p><math>x\!</math></p> |
| |- | | |- |
− | | height="36px" | <p>0 0 1 0</p> | + | | height="36px" | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p> |
| |- | | |- |
− | | height="36px" | <p>0 1 0 0</p> | + | | height="36px" | <p><math>x\ \operatorname{or}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p>1 0 0 0</p> | + | | height="36px" | <p><math>\operatorname{true}</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>(x)(y)\!</math></p> | + | | height="36px" | <p><math>x \land y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(x)\ y\!</math></p> | + | | height="36px" | <p><math>x = y\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ (y)\!</math></p> | + | | height="36px" | <p><math>y\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ y\!</math></p> | + | | height="36px" | <p><math>x \Rightarrow y</math></p> |
− | |}
| |
− | |
| |
− | {| align="center"
| |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p> | + | | height="36px" | <p><math>x\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>y\ \operatorname{without}\ x</math></p> | + | | height="36px" | <p><math>x \Leftarrow y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{without}\ y</math></p> | + | | height="36px" | <p><math>x \lor y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{and}\ y</math></p> | + | | height="36px" | <p><math>1\!</math></p> |
| + | |} |
| |} | | |} |
| + | <br> |
| + | |
| + | ===Table 2=== |
| + | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 2. Propositional Forms on Two Variables''' |
| + | |- style="background:ghostwhite; height:36px" |
| + | | <math>\mathcal{L}_1</math> |
| + | | <math>\mathcal{L}_2</math> |
| + | | <math>\mathcal{L}_3</math> |
| + | | <math>\mathcal{L}_4</math> |
| + | | <math>\mathcal{L}_5</math> |
| + | | <math>\mathcal{L}_6</math> |
| + | |- style="background:ghostwhite; height:48px" |
| + | | |
| | | | | |
− | {| align="center" | + | {| align="right" style="background:ghostwhite; text-align:right" |
| |- | | |- |
− | | height="36px" | <p><math>\lnot x \land \lnot y</math></p>
| + | | <math>x\!</math> : |
| |- | | |- |
− | | height="36px" | <p><math>\lnot x \land y</math></p>
| + | | <math>y\!</math> : |
| + | |} |
| + | | |
| + | {| align="center" style="background:ghostwhite" |
| |- | | |- |
− | | height="36px" | <p><math>x \land \lnot y</math></p> | + | | 1 1 0 0 |
| |- | | |- |
− | | height="36px" | <p><math>x \land y</math></p> | + | | 1 0 1 0 |
| |} | | |} |
| + | | |
| + | | |
| + | | |
| + | |- style="height:36px" |
| + | | <p><math>f_{0}\!</math></p> |
| + | | <p><math>f_{0000}\!</math></p> |
| + | | <p>0 0 0 0</p> |
| + | | <p><math>(~)\!</math></p> |
| + | | <p><math>\operatorname{false}</math></p> |
| + | | <p><math>1\!</math></p> |
| |- | | |- |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{3}\!</math></p> | + | | height="36px" | <p><math>f_{1}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{12}\!</math></p> | + | | height="36px" | <p><math>f_{2}\!</math></p> |
− | |}
| |
− | |
| |
− | {| align="center"
| |
| |- | | |- |
− | | height="36px" | <p><math>f_{0011}\!</math></p> | + | | height="36px" | <p><math>f_{4}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1100}\!</math></p> | + | | height="36px" | <p><math>f_{8}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p>0 0 1 1</p> | + | | height="36px" | <p><math>f_{0001}\!</math></p> |
| + | |- |
| + | | height="36px" | <p><math>f_{0010}\!</math></p> |
| + | |- |
| + | | height="36px" | <p><math>f_{0100}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p>1 1 0 0</p> | + | | height="36px" | <p><math>f_{1000}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>(x)\!</math></p> | + | | height="36px" | <p>0 0 0 1</p> |
| + | |- |
| + | | height="36px" | <p>0 0 1 0</p> |
| + | |- |
| + | | height="36px" | <p>0 1 0 0</p> |
| |- | | |- |
− | | height="36px" | <p><math>x\!</math></p> | + | | height="36px" | <p>1 0 0 0</p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not}\ x</math></p> | + | | height="36px" | <p><math>(x)(y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\!</math></p> | + | | height="36px" | <p><math>(x)\ y\!</math></p> |
− | |}
| |
− | |
| |
− | {| align="center"
| |
| |- | | |- |
− | | height="36px" | <p><math>\lnot x</math></p> | + | | height="36px" | <p><math>x\ (y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\!</math></p> | + | | height="36px" | <p><math>x\ y\!</math></p> |
| |} | | |} |
− | |-
| |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{6}\!</math></p> | + | | height="36px" | <p><math>\operatorname{neither}\ x\ \operatorname{nor}\ y</math></p> |
| + | |- |
| + | | height="36px" | <p><math>y\ \operatorname{without}\ x</math></p> |
| + | |- |
| + | | height="36px" | <p><math>x\ \operatorname{without}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{9}\!</math></p> | + | | height="36px" | <p><math>x\ \operatorname{and}\ y</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{0110}\!</math></p> | + | | height="36px" | <p><math>\lnot x \land \lnot y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1001}\!</math></p> | + | | height="36px" | <p><math>\lnot x \land y</math></p> |
− | |}
| |
− | |
| |
− | {| align="center"
| |
| |- | | |- |
− | | height="36px" | <p>0 1 1 0</p> | + | | height="36px" | <p><math>x \land \lnot y</math></p> |
| |- | | |- |
− | | height="36px" | <p>1 0 0 1</p> | + | | height="36px" | <p><math>x \land y</math></p> |
| |} | | |} |
| + | |- |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>(x,\ y)\!</math></p> | + | | height="36px" | <p><math>f_{3}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>((x,\ y))\!</math></p> | + | | height="36px" | <p><math>f_{12}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{not~equal~to}\ y</math></p> | + | | height="36px" | <p><math>f_{0011}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x\ \operatorname{equal~to}\ y</math></p> | + | | height="36px" | <p><math>f_{1100}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>x \ne y</math></p> | + | | height="36px" | <p>0 0 1 1</p> |
| |- | | |- |
− | | height="36px" | <p><math>x = y\!</math></p> | + | | height="36px" | <p>1 1 0 0</p> |
| |} | | |} |
− | |-
| |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{5}\!</math></p> | + | | height="36px" | <p><math>(x)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{10}\!</math></p> | + | | height="36px" | <p><math>x\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{0101}\!</math></p> | + | | height="36px" | <p><math>\operatorname{not}\ x</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1010}\!</math></p> | + | | height="36px" | <p><math>x\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p>0 1 0 1</p> | + | | height="36px" | <p><math>\lnot x</math></p> |
| |- | | |- |
− | | height="36px" | <p>1 0 1 0</p> | + | | height="36px" | <p><math>x\!</math></p> |
| |} | | |} |
| + | |- |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>(y)\!</math></p> | + | | height="36px" | <p><math>f_{6}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>y\!</math></p> | + | | height="36px" | <p><math>f_{9}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not}\ y</math></p> | + | | height="36px" | <p><math>f_{0110}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>y\!</math></p> | + | | height="36px" | <p><math>f_{1001}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>\lnot y</math></p> | + | | height="36px" | <p>0 1 1 0</p> |
| |- | | |- |
− | | height="36px" | <p><math>y\!</math></p> | + | | height="36px" | <p>1 0 0 1</p> |
| |} | | |} |
− | |-
| |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{7}\!</math></p> | + | | height="36px" | <p><math>(x,\ y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{11}\!</math></p> | + | | height="36px" | <p><math>((x,\ y))\!</math></p> |
| + | |} |
| + | | |
| + | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{13}\!</math></p> | + | | height="36px" | <p><math>x\ \operatorname{not~equal~to}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{14}\!</math></p> | + | | height="36px" | <p><math>x\ \operatorname{equal~to}\ y</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{0111}\!</math></p> | + | | height="36px" | <p><math>x \ne y</math></p> |
| + | |- |
| + | | height="36px" | <p><math>x = y\!</math></p> |
| + | |} |
| |- | | |- |
− | | height="36px" | <p><math>f_{1011}\!</math></p> | + | | |
| + | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>f_{1101}\!</math></p> | + | | height="36px" | <p><math>f_{5}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>f_{1110}\!</math></p> | + | | height="36px" | <p><math>f_{10}\!</math></p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p>0 1 1 1</p> | + | | height="36px" | <p><math>f_{0101}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p>1 0 1 1</p> | + | | height="36px" | <p><math>f_{1010}\!</math></p> |
| + | |} |
| + | | |
| + | {| align="center" |
| |- | | |- |
− | | height="36px" | <p>1 1 0 1</p> | + | | height="36px" | <p>0 1 0 1</p> |
| |- | | |- |
− | | height="36px" | <p>1 1 1 0</p> | + | | height="36px" | <p>1 0 1 0</p> |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>(x\ y)\!</math></p> | + | | height="36px" | <p><math>(y)\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>(x\ (y))\!</math></p> | + | | height="36px" | <p><math>y\!</math></p> |
− | |-
| |
− | | height="36px" | <p><math>((x)\ y)\!</math></p>
| |
− | |-
| |
− | | height="36px" | <p><math>((x)(y))\!</math></p>
| |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p> | + | | height="36px" | <p><math>\operatorname{not}\ y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p> | + | | height="36px" | <p><math>y\!</math></p> |
− | |-
| |
− | | height="36px" | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p>
| |
− | |-
| |
− | | height="36px" | <p><math>x\ \operatorname{or}\ y</math></p>
| |
| |} | | |} |
| | | | | |
| {| align="center" | | {| align="center" |
| |- | | |- |
− | | height="36px" | <p><math>\lnot x \lor \lnot y</math></p> | + | | height="36px" | <p><math>\lnot y</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x \Rightarrow y</math></p> | + | | height="36px" | <p><math>y\!</math></p> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <p><math>f_{7}\!</math></p> |
| + | |- |
| + | | height="36px" | <p><math>f_{11}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x \Leftarrow y</math></p> | + | | height="36px" | <p><math>f_{13}\!</math></p> |
| |- | | |- |
− | | height="36px" | <p><math>x \lor y</math></p> | + | | height="36px" | <p><math>f_{14}\!</math></p> |
| |} | | |} |
− | |- style="height:36px" | + | | |
− | | <p><math>f_{15}\!</math></p> | + | {| align="center" |
− | | <p><math>f_{1111}\!</math></p> | + | |- |
− | | <p>1 1 1 1</p> | + | | height="36px" | <p><math>f_{0111}\!</math></p> |
− | | <p><math>((~))\!</math></p> | + | |- |
− | | <p><math>\operatorname{true}</math></p> | + | | height="36px" | <p><math>f_{1011}\!</math></p> |
− | | <p><math>1\!</math></p>
| + | |- |
| + | | height="36px" | <p><math>f_{1101}\!</math></p> |
| + | |- |
| + | | height="36px" | <p><math>f_{1110}\!</math></p> |
| |} | | |} |
− | <br>
| + | | |
− | | + | {| align="center" |
− | ===Table 3===
| |
− | | |
− | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, here being collected into a set of seven natural classes.
| |
− | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | |
− | |+ '''Table 3. <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>'''
| |
− | |- style="background:ghostwhite; height:36px"
| |
− | |
| |
− | | <math>f\!</math>
| |
− | | <math>\operatorname{E}f|_{xy}</math>
| |
− | | <math>\operatorname{E}f|_{x(y)}</math>
| |
− | | <math>\operatorname{E}f|_{(x)y}</math>
| |
− | | <math>\operatorname{E}f|_{(x)(y)}</math>
| |
| |- | | |- |
− | | <math>f_{0}\!</math> | + | | height="36px" | <p>0 1 1 1</p> |
− | | <math>(~)\!</math>
| |
− | | <math>(~)\!</math>
| |
− | | <math>(~)\!</math>
| |
− | | <math>(~)\!</math>
| |
− | | <math>(~)\!</math>
| |
| |- | | |- |
− | | <math>f_{1}\!</math> | + | | height="36px" | <p>1 0 1 1</p> |
− | | <math>(x)(y)\!</math> | + | |- |
− | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> | + | | height="36px" | <p>1 1 0 1</p> |
− | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> | |
− | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>
| |
− | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>
| |
| |- | | |- |
− | | <math>f_{2}\!</math> | + | | height="36px" | <p>1 1 1 0</p> |
− | | <math>(x) y\!</math> | + | |} |
− | | <math>\operatorname{d}x (\operatorname{d}y)\!</math> | + | | |
− | | <math>\operatorname{d}x\ \operatorname{d}y\!</math> | + | {| align="center" |
− | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>
| |
− | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> | |
| |- | | |- |
− | | <math>f_{4}\!</math> | + | | height="36px" | <p><math>(x\ y)\!</math></p> |
− | | <math>x (y)\!</math>
| |
− | | <math>(\operatorname{d}x) \operatorname{d}y\!</math> | |
− | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>
| |
− | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>
| |
− | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>
| |
| |- | | |- |
− | | <math>f_{8}\!</math> | + | | height="36px" | <p><math>(x\ (y))\!</math></p> |
− | | <math>x y\!</math> | |
− | | <math>(\operatorname{d}x)(\operatorname{d}y)\!</math>
| |
− | | <math>(\operatorname{d}x) \operatorname{d}y\!</math>
| |
− | | <math>\operatorname{d}x (\operatorname{d}y)\!</math>
| |
− | | <math>\operatorname{d}x\ \operatorname{d}y\!</math>
| |
| |- | | |- |
− | | <math>f_{3}\!</math> | + | | height="36px" | <p><math>((x)\ y)\!</math></p> |
− | | <math>(x)\!</math>
| |
− | | <math>\operatorname{d}x\!</math>
| |
− | | <math>\operatorname{d}x\!</math>
| |
− | | <math>(\operatorname{d}x)\!</math>
| |
− | | <math>(\operatorname{d}x)\!</math>
| |
| |- | | |- |
− | | <math>f_{12}\!</math> | + | | height="36px" | <p><math>((x)(y))\!</math></p> |
− | | <math>x\!</math> | + | |} |
− | | <math>(\operatorname{d}x)\!</math>
| + | | |
− | | <math>(\operatorname{d}x)\!</math>
| + | {| align="center" |
− | | <math>\operatorname{d}x\!</math> | |
− | | <math>\operatorname{d}x\!</math> | |
| |- | | |- |
− | | <math>f_{6}\!</math> | + | | height="36px" | <p><math>\operatorname{not~both}\ x\ \operatorname{and}\ y</math></p> |
− | | <math>(x, y)\!</math> | |
− | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>
| |
− | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>
| |
− | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>
| |
− | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>
| |
| |- | | |- |
− | | <math>f_{9}\!</math> | + | | height="36px" | <p><math>\operatorname{not}\ x\ \operatorname{without}\ y</math></p> |
− | | <math>((x, y))\!</math> | + | |- |
− | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>
| + | | height="36px" | <p><math>\operatorname{not}\ y\ \operatorname{without}\ x</math></p> |
− | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math> | |
− | | <math>(\operatorname{d}x, \operatorname{d}y)\!</math>
| |
− | | <math>((\operatorname{d}x, \operatorname{d}y))\!</math>
| |
| |- | | |- |
− | | <math>f_{5}\!</math> | + | | height="36px" | <p><math>x\ \operatorname{or}\ y</math></p> |
− | | <math>(y)\!</math>
| + | |} |
− | | <math>\operatorname{d}y\!</math>
| + | | |
− | | <math>(\operatorname{d}y)\!</math>
| + | {| align="center" |
− | | <math>\operatorname{d}y\!</math> | |
− | | <math>(\operatorname{d}y)\!</math> | |
| |- | | |- |
− | | <math>f_{10}\!</math> | + | | height="36px" | <p><math>\lnot x \lor \lnot y</math></p> |
− | | <math>y\!</math> | |
− | | <math>(\operatorname{d}y)\!</math>
| |
− | | <math>\operatorname{d}y\!</math>
| |
− | | <math>(\operatorname{d}y)\!</math>
| |
− | | <math>\operatorname{d}y\!</math>
| |
| |- | | |- |
− | | <math>f_{7}\!</math> | + | | height="36px" | <p><math>x \Rightarrow y</math></p> |
− | | <math>(x y)\!</math>
| |
− | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math>
| |
− | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> | |
− | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>
| |
− | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>
| |
| |- | | |- |
− | | <math>f_{11}\!</math> | + | | height="36px" | <p><math>x \Leftarrow y</math></p> |
− | | <math>(x (y))\!</math>
| |
− | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>
| |
− | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> | |
− | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>
| |
− | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>
| |
| |- | | |- |
− | | <math>f_{13}\!</math> | + | | height="36px" | <p><math>x \lor y</math></p> |
− | | <math>((x) y)\!</math> | + | |} |
− | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>
| + | |- style="height:36px" |
− | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math>
| + | | <p><math>f_{15}\!</math></p> |
− | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> | + | | <p><math>f_{1111}\!</math></p> |
− | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math>
| + | | <p>1 1 1 1</p> |
− | |- | + | | <p><math>((~))\!</math></p> |
− | | <math>f_{14}\!</math> | + | | <p><math>\operatorname{true}</math></p> |
− | | <math>((x)(y))\!</math>
| + | | <p><math>1\!</math></p> |
− | | <math>(\operatorname{d}x\ \operatorname{d}y)\!</math> | + | |} |
− | | <math>(\operatorname{d}x (\operatorname{d}y))\!</math>
| + | <br> |
− | | <math>((\operatorname{d}x) \operatorname{d}y)\!</math> | + | |
− | | <math>((\operatorname{d}x)(\operatorname{d}y))\!</math> | + | ===Table 3=== |
− | |-
| |
− | | <math>f_{15}\!</math>
| |
− | | <math>((~))\!</math> | |
− | | <math>((~))\!</math>
| |
− | | <math>((~))\!</math> | |
− | | <math>((~))\!</math>
| |
− | | <math>((~))\!</math>
| |
− | |}<br> | |
| | | |
− | ===Table 3 : Work Area===
| + | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, here being collected into a set of seven natural classes. |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |