Line 7,882: |
Line 7,882: |
| |}<br> | | |}<br> |
| | | |
− | <pre>
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
− | Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes | + | |+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes''' |
− | o--------------o----------------------o--------------------o----------------------o
| + | |- style="background:paleturquoise" |
− | | | Operator | Proposition | Transformation | | + | | |
− | | | or | or | or | | + | | align="center" | '''Operator<br>or<br>Operand''' |
− | | | Operand | Component | Mapping | | + | | align="center" | '''Proposition<br>or<br>Component''' |
− | o--------------o----------------------o--------------------o----------------------o
| + | | align="center" | '''Transformation<br>or<br>Mapping''' |
− | | | | | | | + | |- |
− | | Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] |
| + | | valign="top" | Operand |
− | | | | | | | + | | valign="top" | |
− | | | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | |
| + | | ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› |
− | o--------------o----------------------o--------------------o----------------------o
| + | |- |
− | | | | | | | + | | ''F'' = ‹''f'', ''g''› : ''U'' → ''X'' |
− | | Tacit | !e! : | !e!F_i : | !e!F : | | + | |} |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] | | + | | valign="top" | |
− | | | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | | | + | | ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 → '''B''' |
− | o--------------o----------------------o--------------------o----------------------o
| + | |- |
− | | | | | | | + | | ''F''<sub>''i''</sub> : '''B'''<sup>''n''</sup> → '''B''' |
− | | Trope | !h! : | !h!F_i : | !h!F : | | + | |} |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | | valign="top" | |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
− | | | | | | | + | | ''F'' : [''u'', ''v''] → [''x'', ''y''] |
− | o--------------o----------------------o--------------------o----------------------o
| + | |- |
− | | | | | | | + | | ''F'' : '''B'''<sup>''n''</sup> → '''B'''<sup>''k''</sup> |
− | | Enlargement | E : | EF_i : | EF : | | + | |} |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | |- |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | | |
− | | | | | | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o--------------o----------------------o--------------------o----------------------o
| + | | Tacit |
− | | | | | | | + | |- |
− | | Difference | D : | DF_i : | DF : | | + | | Extension |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | |} |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | | |
− | | | | | | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o--------------o----------------------o--------------------o----------------------o
| + | | <math>\epsilon</math> : |
− | | | | | | | + | |- |
− | | Differential | d : | dF_i : | dF : | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | |- |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>) |
− | | | | | | | + | |} |
− | o--------------o----------------------o--------------------o----------------------o
| + | | |
− | | | | | | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | Remainder | r : | rF_i : | rF : | | + | | <math>\epsilon</math>''F''<sub>''i''</sub> : |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | |- |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''B''' |
− | | | | | | | + | |- |
− | o--------------o----------------------o--------------------o----------------------o
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''B''' |
− | | | | | | | + | |} |
− | | Radius | $e$ = <!e!, !h!> : | | $e$F : | | + | | |
− | | Operator | | | | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| + | | <math>\epsilon</math>''F'' : |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | |- |
− | | | | | |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y''] |
− | | | | | [B^n x D^n] -> | | + | |- |
− | | | | | [B^k x D^k] |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>] |
− | | | | | |
| + | |} |
− | o--------------o----------------------o--------------------o----------------------o
| + | |- |
− | | | | | |
| + | | |
− | | Secant | $E$ = <!e!, E> : | | $E$F : |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | Operator | | | |
| + | | Trope |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| + | |- |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | | Extension |
− | | | | | |
| + | |} |
− | | | | | [B^n x D^n] -> |
| + | | |
− | | | | | [B^k x D^k] |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | |
| + | | <math>\eta</math> : |
− | o--------------o----------------------o--------------------o----------------------o
| + | |- |
− | | | | | |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | Chord | $D$ = <!e!, D> : | | $D$F : |
| + | |- |
− | | Operator | | | |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| + | |} |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | | |
− | | | | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | [B^n x D^n] -> |
| + | | <math>\eta</math>''F''<sub>''i''</sub> : |
− | | | | | [B^k x D^k] |
| + | |- |
− | | | | | |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | o--------------o----------------------o--------------------o----------------------o
| + | |- |
− | | | | | |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
− | | Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : |
| + | |} |
− | | Functor | | | |
| + | | |
− | | | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | | <math>\eta</math>''F'' : |
− | | | | | |
| + | |- |
− | | | | B^n x D^n -> D | [B^n x D^n] -> |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
− | | | | | [B^k x D^k] |
| + | |- |
− | | | | | |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
− | o--------------o----------------------o--------------------o----------------------o
| + | |} |
− | </pre> | + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Enlargement |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | E : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | E''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | E''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Difference |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | D : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | D''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | D''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Differential |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Remainder |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | r : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | r''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | r''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Radius |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Secant |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''E'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Chord |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''D'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Tangent |
| + | |- |
| + | | Functor |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''T'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |}<br> |
| | | |
| ===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>=== | | ===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>=== |