Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
no edit summary
Line 207: Line 207:  
The average uncertainty reduction per sign of the language is computed by taking a ''weighted average'' of the reductions that occur in the channel, where the weight of each reduction is the number of options or outcomes that fall under the associated sign.
 
The average uncertainty reduction per sign of the language is computed by taking a ''weighted average'' of the reductions that occur in the channel, where the weight of each reduction is the number of options or outcomes that fall under the associated sign.
   −
:* The uncertainty reduction of <math>(\log 5 - \log 3)</math> gets a weight of 3.
+
:* The uncertainty reduction of <math>(\log 5 - \log 3)\!</math> gets a weight of 3.
   −
:* The uncertainty reduction of <math>(\log 5 - \log 2)</math> gets a weight of 2.
+
:* The uncertainty reduction of <math>(\log 5 - \log 2)\!</math> gets a weight of 2.
    
Finally, the weighted average of these two reductions is:
 
Finally, the weighted average of these two reductions is:
   −
: <math>{1 \over {2 + 3}}(3(\log 5 - \log 3) + 2(\log 5 - \log 2))</math>
+
: <math>{1 \over {2 + 3}}(3(\log 5 - \log 3) + 2(\log 5 - \log 2))\!</math>
   −
Extracting the general pattern of this calculation yields the following worksheet for computing the capacity of a 2-symbol channel with frequencies that partition as ''n''&nbsp;=&nbsp;''k''<sub>1</sub>&nbsp;+&nbsp;''k''<sub>2</sub>.
+
Extracting the general pattern of this calculation yields the following worksheet for computing the capacity of a 2-symbol channel with frequencies that partition as <math>n = k_1 + k_2.\!</math>
    
{| cellspacing="6"  
 
{| cellspacing="6"  
 
| Capacity
 
| Capacity
| of a channel {"A", "B"} that bears the odds of 60 "A" to 40 "B"
+
| of a channel {&ldquo;A&rdquo;, &ldquo;B&rdquo;} that bears the odds of 60 &ldquo;A&rdquo; to 40 &ldquo;B&rdquo;
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
| <math>=\quad {1 \over n}(k_1(\log n - \log k_1) + k_2(\log n - \log k_2))</math>
+
| <math>=\quad {1 \over n}(k_1(\log n - \log k_1) + k_2(\log n - \log k_2))\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
| <math>=\quad {k_1 \over n}(\log n - \log k_1) + {k_2 \over n}(\log n - \log k_2)</math>
+
| <math>=\quad {k_1 \over n}(\log n - \log k_1) + {k_2 \over n}(\log n - \log k_2)\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
| <math>=\quad -{k_1 \over n}(\log k_1 - \log n) -{k_2 \over n}(\log k_2 - \log n)</math>
+
| <math>=\quad -{k_1 \over n}(\log k_1 - \log n) -{k_2 \over n}(\log k_2 - \log n)\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
| <math>=\quad -{k_1 \over n}(\log {k_1 \over n}) - {k_2 \over n}(\log {k_2 \over n})</math>
+
| <math>=\quad -{k_1 \over n}(\log {k_1 \over n}) - {k_2 \over n}(\log {k_2 \over n})\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
| <math>=\quad -(p_1 \log p_1 + p_2 \log p_2)</math>
+
| <math>=\quad -(p_1 \log p_1 + p_2 \log p_2)\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
| <math>=\quad - (0.6 \log 0.6 + 0.4 \log 0.4)</math>
+
| <math>=\quad - (0.6 \log 0.6 + 0.4 \log 0.4)\!</math>
 
|-
 
|-
 
| &nbsp;
 
| &nbsp;
| <math>=\quad 0.971</math>
+
| <math>=\quad 0.971\!</math>
 
|}
 
|}
   Line 249: Line 249:  
* [[Charles Sanders Peirce (Bibliography)]]
 
* [[Charles Sanders Peirce (Bibliography)]]
   −
* Peirce, C.S. (1867), "Upon Logical Comprehension and Extension", [http://www.iupui.edu/~peirce/writings/v2/w2/w2_06/v2_06.htm Online].
+
* Peirce, C.S. (1867), &ldquo;Upon Logical Comprehension and Extension&rdquo;, [http://www.iupui.edu/~peirce/writings/v2/w2/w2_06/v2_06.htm Online].
    
==See also==
 
==See also==
12,080

edits

Navigation menu