Line 7:
Line 7:
With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions:
With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
|+ <math>\text{Table 7.} ~~ \text{Syllogistic Premisses as Higher Order Indicator Functions}</math>
|+ <math>\text{Table 7.} ~~ \text{Syllogistic Premisses as Higher Order Indicator Functions}</math>
|
|
<math>\begin{array}{clcl}
<math>\begin{array}{clcl}
−
\mathrm{A} &
+
\mathrm{A}
−
\mathrm{Universal~Affirmative} &
+
& \mathrm{Universal~Affirmative}
−
\mathrm{All}\ u\ \mathrm{is}\ v &
+
& \mathrm{All} ~ u ~ \mathrm{is} ~ v
−
\mathrm{Indicator~of}\ u (v) = 0 \\
+
& \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 0
−
\mathrm{E} &
+
\\
−
\mathrm{Universal~Negative} &
+
\mathrm{E}
−
\mathrm{All}\ u\ \mathrm{is}\ (v) &
+
& \mathrm{Universal~Negative}
−
\mathrm{Indicator~of}\ u \cdot v = 0 \\
+
& \mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}
−
\mathrm{I} &
+
& \mathrm{Indicator~of} ~ u \cdot v = 0
−
\mathrm{Particular~Affirmative} &
+
\\
−
\mathrm{Some}\ u\ \mathrm{is}\ v &
+
\mathrm{I}
−
\mathrm{Indicator~of}\ u \cdot v = 1 \\
+
& \mathrm{Particular~Affirmative}
−
\mathrm{O} &
+
& \mathrm{Some} ~ u ~ \mathrm{is} ~ v
−
\mathrm{Particular~Negative} &
+
& \mathrm{Indicator~of} ~ u \cdot v = 1
−
\mathrm{Some}\ u\ \mathrm{is}\ (v) &
+
\\
−
\mathrm{Indicator~of}\ u (v) = 1 \\
+
\mathrm{O}
+
& \mathrm{Particular~Negative}
+
& \mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}
+
& \mathrm{Indicator~of} ~ u \texttt{(} v \texttt{)} = 1
\end{array}</math>
\end{array}</math>
|}
|}