Changes

MyWikiBiz, Author Your Legacy — Saturday April 27, 2024
Jump to navigationJump to search
add another piece
Line 1,524: Line 1,524:     
Up till now quantification theory has been based on the assumption of individual variables ranging over universal collections of perfectly determinate elements.  Merely to write down quantified formulas like <math>\forall_{x \in X} f(x)</math> and <math>\exists_{x \in X} f(x)</math> involves a subscription to such notions, as shown by the membership relations invoked in their indices.  Reflected on pragmatic and constructive principles, these ideas begin to appear as problematic hypotheses whose warrants are not beyond question, projects of exhaustive determination that overreach the powers of finite information and control to manage.  Therefore, it is worth considering how we might shift the medium of quantification theory closer to familiar ground, toward the predicates themselves that represent our continuing acquaintance with phenomena.
 
Up till now quantification theory has been based on the assumption of individual variables ranging over universal collections of perfectly determinate elements.  Merely to write down quantified formulas like <math>\forall_{x \in X} f(x)</math> and <math>\exists_{x \in X} f(x)</math> involves a subscription to such notions, as shown by the membership relations invoked in their indices.  Reflected on pragmatic and constructive principles, these ideas begin to appear as problematic hypotheses whose warrants are not beyond question, projects of exhaustive determination that overreach the powers of finite information and control to manage.  Therefore, it is worth considering how we might shift the medium of quantification theory closer to familiar ground, toward the predicates themselves that represent our continuing acquaintance with phenomena.
 +
 +
==References==
 +
 +
* Quine, W.V. (1969/1981), "On the Limits of Decision", ''Akten des XIV. Internationalen Kongresses für Philosophie'', vol. 3 (1969).  Reprinted, pp. 156&ndash;163 in Quine (ed., 1981), ''Theories and Things'', Harvard University Press, Cambridge, MA.
 +
 +
==Related Topics==
 +
 +
* [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Inquiry_and_Analogy|Functional Logic : Inquiry and Analogy]]
 +
 +
* [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory|Functional Logic : Quantification Theory]]
 +
 +
==Appendix : Generalized Umpire Operators==
 +
 +
In order to get a handle on the space of higher order propositions and eventually to carry out a functional approach to quantification theory, it serves to construct some specialized tools.  Specifically, I define a higher order operator <math>\Upsilon,</math> called the ''umpire operator'', which takes up to three propositions as arguments and returns a single truth value as the result.  Formally, this so-called ''[[multigrade operator|multigrade]]'' property of <math>\Upsilon</math> can be expressed as a union of function types, in the following manner:
 +
 +
{| align="center" cellpadding="8" style="text-align:center"
 +
| <math>\Upsilon : \bigcup_{\ell = 1, 2, 3} ((\mathbb{B}^k \to \mathbb{B})^\ell \to \mathbb{B}).</math>
 +
|}
 +
 +
In contexts of application the intended sense can be discerned by the number of arguments that actually appear in the argument list.  Often, the first and last arguments appear as indices, the one in the middle being treated as the main argument while the other two arguments serve to modify the sense of the operation in question.  Thus, we have the following forms:
 +
 +
{| align="center" cellpadding="8" style="text-align:center"
 +
| <math>\Upsilon_p^r q  =  \Upsilon (p, q, r)</math>
 +
|-
 +
| <math>\Upsilon_p^r : (\mathbb{B}^k \to \mathbb{B}) \to \mathbb{B}</math>
 +
|}
 +
 +
The intention of this operator is that we evaluate the proposition <math>q</math> on each model of the proposition <math>p</math> and combine the results according to the method indicated by the connective parameter <math>r.</math>  In principle, the index <math>r</math> might specify any connective on as many as <math>2^k</math> arguments, but usually we have in mind a much simpler form of combination, most often either collective products or collective sums.  By convention, each of the accessory indices <math>p, r</math> is assigned a default value that is understood to be in force when the corresponding argument place is left blank, specifically, the constant proposition <math>1 : \mathbb{B}^k \to \mathbb{B}</math> for the lower index <math>p,</math> and the continued conjunction or continued product operation <math>\textstyle\prod</math> for the upper index <math>r.</math>  Taking the upper default value gives license to the following readings:
 +
 +
{| align="center" cellpadding="8" style="text-align:center"
 +
| <math>\Upsilon_p (q) = \Upsilon (p, q) = \Upsilon (p, q, \textstyle\prod).</math>
 +
|-
 +
| <math>\Upsilon_p = \Upsilon (p, \underline{~~}, \textstyle\prod) : (\mathbb{B}^k \to \mathbb{B}) \to \mathbb{B}.</math>
 +
|}
 +
 +
This means that <math>\Upsilon_p (q) = 1</math> if and only if <math>q</math> holds for all models of <math>p.</math>  In propositional terms, this is tantamount to the assertion that <math>p \Rightarrow q,</math> or that <math>\texttt{(} p \texttt{(} q \texttt{))} = 1.</math>
 +
 +
Throwing in the lower default value permits the following abbreviations:
 +
 +
{| align="center" cellpadding="8" style="text-align:center"
 +
| <math>\Upsilon  q  = \Upsilon (q) = \Upsilon_1 (q) = \Upsilon (1, q, \textstyle\prod).</math>
 +
|-
 +
| <math>\Upsilon = \Upsilon (1, \underline{~~}, \textstyle\prod)) : (\mathbb{B}^k\ \to \mathbb{B}) \to \mathbb{B}.</math>
 +
|}
 +
 +
This means that <math>\Upsilon q = 1</math> if and only if <math>q</math> holds for the whole universe of discourse in question, that is, if and only <math>q</math> is the constantly true proposition <math>1 : \mathbb{B}^k \to \mathbb{B}.</math>  The ambiguities of this usage are not a problem so long as we distinguish the context of definition from the context of application and restrict all shorthand notations to the latter.
 +
 +
==Document History==
 +
 +
'''Note.'''  The above material is excerpted from a project report on [[Charles Sanders Peirce]]'s conceptions of inquiry and analogy.  Online formatting of the original document and continuation of the initial project are currently in progress under the title ''[[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Inquiry_and_Analogy|Functional Logic : Inquiry and Analogy]]''.
 +
 +
{| width="100%"
 +
| align="left"  | Author:
 +
| align="center" | Jon Awbrey
 +
| align="right"  | November 1, 1995
 +
|-
 +
| align="left"  | Course:
 +
| align="center" | Engineering 690, Graduate Project
 +
| align="right"  | Cont'd from Winter 1995
 +
|-
 +
| align="left"  | Supervisors:
 +
| align="center" | F. Mili & M.A. Zohdy
 +
| align="right"  | Oakland University
 +
|}
 +
 +
<pre>
 +
| Version:  Draft 3.25
 +
| Created:  01 Jan 1995
 +
| Relayed:  01 Nov 1995
 +
| Revised:  24 Dec 2001
 +
| Revised:  12 Mar 2004
 +
</pre>
12,080

edits

Navigation menu