MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
360 bytes removed
, 18:44, 17 November 2009
Line 1,265: |
Line 1,265: |
| Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering. By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables. | | Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering. By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables. |
| | | |
− | <center><math>\begin{matrix}
| + | {| align="center" cellpadding="8" |
− | \alpha_0 f = 1 & | + | | |
− | \mathrm{iff} & | + | <math>\begin{matrix} |
− | f_0 \Rightarrow f & | + | \alpha_0 f = 1 |
− | \mathrm{iff} & | + | & \text{iff} & |
− | 0 \Rightarrow f. & | + | f_0 \Rightarrow f |
− | \therefore & | + | & \text{iff} & |
− | \alpha_0 f = 1 & | + | 0 \Rightarrow f, |
− | \operatorname{for~all}\ f. \\ | + | & \text{hence} & |
− | \alpha_{15} f = 1 & | + | \alpha_0 f = 1 |
− | \mathrm{iff} & | + | & \text{for all}~ f. |
− | f_{15} \Rightarrow f & | + | \\ |
− | \mathrm{iff} & | + | \alpha_{15} f = 1 |
− | 1 \Rightarrow f. & | + | & \text{iff} & |
− | \therefore & | + | f_{15} \Rightarrow f |
− | \alpha_{15} f = 1 & | + | & \text{iff} & |
− | \mathrm{iff} f = 1. \\ | + | 1 \Rightarrow f, |
− | \beta_0 f = 1 & | + | & \text{hence} & |
− | \mathrm{iff} & | + | \alpha_{15} f = 1 |
− | f \Rightarrow f_0 & | + | & \text{iff}~ f = 1. |
− | \mathrm{iff} & | + | \\ |
− | f \Rightarrow 0. & | + | \beta_0 f = 1 |
− | \therefore & | + | & \text{iff} & |
− | \beta_0 f = 1 & | + | f \Rightarrow f_0 |
− | \mathrm{iff} f = 0. \\ | + | & \text{iff} & |
− | \beta_{15} f = 1 & | + | f \Rightarrow 0, |
− | \mathrm{iff} & | + | & \text{hence} & |
− | f \Rightarrow f_{15} & | + | \beta_0 f = 1 |
− | \mathrm{iff} & | + | & \text{iff}~ f = 0. |
− | f \Rightarrow 1. & | + | \\ |
− | \therefore & | + | \beta_{15} f = 1 |
− | \beta_{15} f = 1 & | + | & \text{iff} & |
− | \operatorname{for~all}\ f. \\ | + | f \Rightarrow f_{15} |
− | \end{matrix}</math></center> | + | & \text{iff} & |
− | <br>
| + | f \Rightarrow 1, |
| + | & \text{hence} & |
| + | \beta_{15} f = 1 |
| + | & \text{for all}~ f. |
| + | \end{matrix}</math> |
| + | |} |
| | | |
| Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. | | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. |