Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
→‎Measure for Measure: refprmat display
Line 1,265: Line 1,265:  
Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.
 
Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering.  By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.
   −
<center><math>\begin{matrix}
+
{| align="center" cellpadding="8"
\alpha_0 f = 1             &
+
|
\mathrm{iff}               &
+
<math>\begin{matrix}
f_0 \Rightarrow f         &
+
\alpha_0 f = 1
\mathrm{iff}               &
+
& \text{iff} &
0 \Rightarrow f.          &
+
f_0 \Rightarrow f
\therefore                &
+
& \text{iff} &
\alpha_0 f = 1             &
+
0 \Rightarrow f,
\operatorname{for~all}\ f. \\
+
& \text{hence} &
\alpha_{15} f = 1         &
+
\alpha_0 f = 1
\mathrm{iff}               &
+
& \text{for all}~ f.
f_{15} \Rightarrow f       &
+
\\
\mathrm{iff}               &
+
\alpha_{15} f = 1
1 \Rightarrow f.          &
+
& \text{iff} &
\therefore                &
+
f_{15} \Rightarrow f
\alpha_{15} f = 1         &
+
& \text{iff} &
\mathrm{iff} f = 1.       \\
+
1 \Rightarrow f,
\beta_0 f = 1             &
+
& \text{hence} &
\mathrm{iff}               &
+
\alpha_{15} f = 1
f \Rightarrow f_0         &
+
& \text{iff}~ f = 1.
\mathrm{iff}               &
+
\\
f \Rightarrow 0.          &
+
\beta_0 f = 1
\therefore                &
+
& \text{iff} &
\beta_0 f = 1             &
+
f \Rightarrow f_0
\mathrm{iff} f = 0.       \\
+
& \text{iff} &
\beta_{15} f = 1           &
+
f \Rightarrow 0,
\mathrm{iff}               &
+
& \text{hence} &
f \Rightarrow f_{15}       &
+
\beta_0 f = 1
\mathrm{iff}               &
+
& \text{iff}~ f = 0.
f \Rightarrow 1.          &
+
\\
\therefore                &
+
\beta_{15} f = 1
\beta_{15} f = 1           &
+
& \text{iff} &
\operatorname{for~all}\ f. \\
+
f \Rightarrow f_{15}
\end{matrix}</math></center>
+
& \text{iff} &
<br>
+
f \Rightarrow 1,
 +
& \text{hence} &
 +
\beta_{15} f = 1
 +
& \text{for all}~ f.
 +
\end{matrix}</math>
 +
|}
    
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
 
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
12,080

edits

Navigation menu