Line 1,265:
Line 1,265:
Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering. By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.
Applied to a given proposition <math>f,\!</math> the qualifiers <math>\alpha_i\!</math> and <math>\beta_i\!</math> tell whether <math>f\!</math> rests <math>\operatorname{above}\ f_i</math> or <math>\operatorname{below}\ f_i,</math> respectively, in the implication ordering. By way of example, let us trace the effects of several such measures, namely, those that occupy the limiting positions of the Tables.
−
<center><math>\begin{matrix}
+
{| align="center" cellpadding="8"
−
\alpha_0 f = 1 &
+
|
−
\mathrm{iff} &
+
<math>\begin{matrix}
−
f_0 \Rightarrow f &
+
\alpha_0 f = 1
−
\mathrm{iff} &
+
& \text{iff} &
−
0 \Rightarrow f. &
+
f_0 \Rightarrow f
−
\therefore &
+
& \text{iff} &
−
\alpha_0 f = 1 &
+
0 \Rightarrow f,
−
\operatorname{for~all}\ f. \\
+
& \text{hence} &
−
\alpha_{15} f = 1 &
+
\alpha_0 f = 1
−
\mathrm{iff} &
+
& \text{for all}~ f.
−
f_{15} \Rightarrow f &
+
\\
−
\mathrm{iff} &
+
\alpha_{15} f = 1
−
1 \Rightarrow f. &
+
& \text{iff} &
−
\therefore &
+
f_{15} \Rightarrow f
−
\alpha_{15} f = 1 &
+
& \text{iff} &
−
\mathrm{iff} f = 1. \\
+
1 \Rightarrow f,
−
\beta_0 f = 1 &
+
& \text{hence} &
−
\mathrm{iff} &
+
\alpha_{15} f = 1
−
f \Rightarrow f_0 &
+
& \text{iff}~ f = 1.
−
\mathrm{iff} &
+
\\
−
f \Rightarrow 0. &
+
\beta_0 f = 1
−
\therefore &
+
& \text{iff} &
−
\beta_0 f = 1 &
+
f \Rightarrow f_0
−
\mathrm{iff} f = 0. \\
+
& \text{iff} &
−
\beta_{15} f = 1 &
+
f \Rightarrow 0,
−
\mathrm{iff} &
+
& \text{hence} &
−
f \Rightarrow f_{15} &
+
\beta_0 f = 1
−
\mathrm{iff} &
+
& \text{iff}~ f = 0.
−
f \Rightarrow 1. &
+
\\
−
\therefore &
+
\beta_{15} f = 1
−
\beta_{15} f = 1 &
+
& \text{iff} &
−
\operatorname{for~all}\ f. \\
+
f \Rightarrow f_{15}
−
\end{matrix}</math></center>
+
& \text{iff} &
−
<br>
+
f \Rightarrow 1,
+
& \text{hence} &
+
\beta_{15} f = 1
+
& \text{for all}~ f.
+
\end{matrix}</math>
+
|}
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.
Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others.