Line 515:
Line 515:
|}
|}
−
Expressing it another way, we may also write:
+
To express it another way:
{| align="center" cellpadding="8" style="text-align:center"
{| align="center" cellpadding="8" style="text-align:center"
| <math>\Upsilon (e, f) = 1\!</math>
| <math>\Upsilon (e, f) = 1\!</math>
| <math>\Leftrightarrow</math>
| <math>\Leftrightarrow</math>
−
| <math>\underline{(e (f))} = \underline{1}.</math>
+
| <math>\texttt{(} e \texttt{(} f \texttt{))} = 1</math>
|}
|}
−
In writing this, however, it is important to notice that the 1's appearing on the left and right have different meanings. Filling in the details, we have:
+
In writing this, however, it is important to notice that the <math>1\!</math> appearing on the left side and the <math>1\!</math> appearing on the right side of the logical equivalence have different meanings. Filling in the details, we have:
{| align="center" cellpadding="8" style="text-align:center"
{| align="center" cellpadding="8" style="text-align:center"
| <math>\Upsilon (e, f) = 1 \in \mathbb{B}</math>
| <math>\Upsilon (e, f) = 1 \in \mathbb{B}</math>
| <math>\Leftrightarrow</math>
| <math>\Leftrightarrow</math>
−
| <math>\underline{(e (f))} = 1 : \langle u, v \rangle \to \mathbb{B}.</math>
+
| <math>\texttt{(} e \texttt{(} f \texttt{))} = 1 : \langle u, v \rangle \to \mathbb{B}</math>
|}
|}