MyWikiBiz, Author Your Legacy — Sunday November 02, 2025
Jump to navigationJump to search
803 bytes added
, 10:56, 24 August 2009
| Line 8: |
Line 8: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | \texttt{(~)} | + | \texttt{()} |
| | & = & 0 | | & = & 0 |
| | & = & \operatorname{false} | | & = & \operatorname{false} |
| Line 24: |
Line 24: |
| | & = & x^\prime y z \lor x y^\prime z \lor x y z^\prime | | & = & x^\prime y z \lor x y^\prime z \lor x y z^\prime |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | + | |} |
| | + | |
| | + | Expressing the general case of <math>\nu_k\!</math> in terms of familiar operations is facilitated by making a preliminary definition. |
| | + | |
| | + | '''Definition.''' Let the function <math>\lnot_j : \mathbb{B}^k \to \mathbb{B},</math> for each integer <math>j \in [1, k],</math> be defined by the following equation: |
| | + | |
| | + | {| align="center" cellpadding="8" width="90%" |
| | + | | <math>\lnot_j (x_1, \ldots, x_j, \ldots, x_k) ~=~ x_1 \land \ldots \land x_{j-1} \land \lnot x_j \land x_{j+1} \land \ldots \land x_k.</math> |
| | + | |} |
| | + | |
| | + | Then <math>\nu_k : \mathbb{B}^k \to \mathbb{B}</math> is defined by the following equation: |
| | + | |
| | + | {| align="center" cellpadding="8" width="90%" |
| | + | | <math>\nu_k (x_1, \ldots, x_k) ~=~ \lnot_1 (x_1, \ldots, x_k) \lor \ldots \lor \lnot_j (x_1, \ldots, x_k) \lor \ldots \lor \lnot_k (x_1, \ldots, x_k).</math> |
| | |} | | |} |
| | | | |