MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
131 bytes added
, 03:38, 23 August 2009
Line 229: |
Line 229: |
| To pass from these limiting examples to the general case, observe that a singular proposition <math>s : \mathbb{B}^k \to \mathbb{B}</math> can be given canonical expression as a conjunction of literals, <math>s = e_1 e_2 \ldots e_{k-1} e_k</math>. Then the proposition <math>\nu (e_1, e_2, \ldots, e_{k-1}, e_k)</math> is <math>1\!</math> on the points adjacent to the point where <math>s\!</math> is <math>1,\!</math> and 0 everywhere else on the cube. | | To pass from these limiting examples to the general case, observe that a singular proposition <math>s : \mathbb{B}^k \to \mathbb{B}</math> can be given canonical expression as a conjunction of literals, <math>s = e_1 e_2 \ldots e_{k-1} e_k</math>. Then the proposition <math>\nu (e_1, e_2, \ldots, e_{k-1}, e_k)</math> is <math>1\!</math> on the points adjacent to the point where <math>s\!</math> is <math>1,\!</math> and 0 everywhere else on the cube. |
| | | |
− | For example, consider the case where <math>k = 3.\!</math> Then the minimal negation operation <math>\nu (p, q, r)\!</math>, when there is no risk of confusion written more simply as <math>(p, q, r)\!</math>, has the following venn diagram: | + | For example, consider the case where <math>k = 3.\!</math> Then the minimal negation operation <math>\nu (p, q, r)\!</math> — written more simply as <math>\texttt{(} p \texttt{,} q \texttt{,} r \texttt{)}</math> — has the following venn diagram: |
| | | |
| {| align="center" cellpadding="10" style="text-align:center" | | {| align="center" cellpadding="10" style="text-align:center" |
| | | | | |
− | <p>[[Image:Minimal_Negation_Operator_1.jpg|500px]]</p> | + | <p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p> |
− | <p><math>\text{Figure 2.} ~~ (p, q, r)</math> | + | <p><math>\text{Figure 2.} ~~ \texttt{(} p \texttt{,} q \texttt{,} r \texttt{)}</math> |
| |} | | |} |
| | | |
− | For a contrasting example, the boolean function expressed by the form <math>((p),(q),(r))\!</math> has the following venn diagram: | + | For a contrasting example, the boolean function expressed by the form <math>\texttt{((} p \texttt{),(} q \texttt{),(} r \texttt{))}</math> has the following venn diagram: |
| | | |
| {| align="center" cellpadding="10" style="text-align:center" | | {| align="center" cellpadding="10" style="text-align:center" |
| | | | | |
− | <p>[[Image:Minimal_Negation_Operator_2.jpg|500px]]</p> | + | <p>[[Image:Venn Diagram ((P),(Q),(R)).jpg|500px]]</p> |
− | <p><math>\text{Figure 3.} ~~ ((p),(q),(r))</math> | + | <p><math>\text{Figure 3.} ~~ \texttt{((} p \texttt{),(} q \texttt{),(} r \texttt{))}</math> |
| |} | | |} |
| | | |