Line 39: |
Line 39: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:80%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> | | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> |
− | | width="20%" | <math>\mathcal{L}_1</math> | + | |- style="background:#f0f0ff" |
− | | width="20%" | <math>\mathcal{L}_2</math> | + | | width="25%" | <math>\mathcal{L}_1</math> |
− | | width="20%" | <math>\mathcal{L}_3</math> | + | | width="25%" | <math>\mathcal{L}_2</math> |
− | | width="20%" | <math>\mathcal{L}_4</math> | + | | width="25%" | <math>\mathcal{L}_3</math> |
− | |- | + | | width="25%" | <math>\mathcal{L}_4</math> |
− | | Decimal
| + | |- style="background:#f0f0ff" |
− | | Binary
| |
− | | Sequential
| |
− | | Parenthetical
| |
− | |-
| |
| | | | | |
− | | align="right" | <math>p =\!</math> | + | | align="right" | <math>p\colon\!</math> |
− | | 1 1 1 1 0 0 0 0 | + | | <math>1~1~1~1~0~0~0~0</math> |
| | | | | |
− | |- | + | |- style="background:#f0f0ff" |
| | | | | |
− | | align="right" | <math>q =\!</math> | + | | align="right" | <math>q\colon\!</math> |
− | | 1 1 0 0 1 1 0 0 | + | | <math>1~1~0~0~1~1~0~0</math> |
| | | | | |
− | |- | + | |- style="background:#f0f0ff" |
| | | | | |
− | | align="right" | <math>r =\!</math> | + | | align="right" | <math>r\colon\!</math> |
− | | 1 0 1 0 1 0 1 0 | + | | <math>1~0~1~0~1~0~1~0</math> |
| | | | | |
− | |}
| |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
| |
− | |-
| |
− | | width="20%" | <math>f_{104}\!</math>
| |
− | | width="20%" | <math>f_{01101000}\!</math>
| |
− | | width="20%" | 0 1 1 0 1 0 0 0
| |
− | | width="20%" | <math>( p , q , r )\!</math>
| |
− | |-
| |
− | | <math>f_{148}\!</math>
| |
− | | <math>f_{10010100}\!</math>
| |
− | | 1 0 0 1 0 1 0 0
| |
− | | <math>( p , q , (r))\!</math>
| |
− | |-
| |
− | | <math>f_{146}\!</math>
| |
− | | <math>f_{10010010}\!</math>
| |
− | | 1 0 0 1 0 0 1 0
| |
− | | <math>( p , (q), r )\!</math>
| |
− | |-
| |
− | | <math>f_{97}\!</math>
| |
− | | <math>f_{01100001}\!</math>
| |
− | | 0 1 1 0 0 0 0 1
| |
− | | <math>( p , (q), (r))\!</math>
| |
− | |-
| |
− | | <math>f_{134}\!</math>
| |
− | | <math>f_{10000110}\!</math>
| |
− | | 1 0 0 0 0 1 1 0
| |
− | | <math>((p), q , r )\!</math>
| |
− | |-
| |
− | | <math>f_{73}\!</math>
| |
− | | <math>f_{01001001}\!</math>
| |
− | | 0 1 0 0 1 0 0 1
| |
− | | <math>((p), q , (r))\!</math>
| |
− | |-
| |
− | | <math>f_{41}\!</math>
| |
− | | <math>f_{00101001}\!</math>
| |
− | | 0 0 1 0 1 0 0 1
| |
− | | <math>((p), (q), r )\!</math>
| |
− | |-
| |
− | | <math>f_{22}\!</math>
| |
− | | <math>f_{00010110}\!</math>
| |
− | | 0 0 0 1 0 1 1 0
| |
− | | <math>((p), (q), (r))\!</math>
| |
− | |}
| |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
| |
− | |-
| |
− | | width="20%" | <math>f_{233}\!</math>
| |
− | | width="20%" | <math>f_{11101001}\!</math>
| |
− | | width="20%" | 1 1 1 0 1 0 0 1
| |
− | | width="20%" | <math>(((p), (q), (r)))\!</math>
| |
− | |-
| |
− | | <math>f_{214}\!</math>
| |
− | | <math>f_{11010110}\!</math>
| |
− | | 1 1 0 1 0 1 1 0
| |
− | | <math>(((p), (q), r ))\!</math>
| |
− | |-
| |
− | | <math>f_{182}\!</math>
| |
− | | <math>f_{10110110}\!</math>
| |
− | | 1 0 1 1 0 1 1 0
| |
− | | <math>(((p), q , (r)))\!</math>
| |
− | |-
| |
− | | <math>f_{121}\!</math>
| |
− | | <math>f_{01111001}\!</math>
| |
− | | 0 1 1 1 1 0 0 1
| |
− | | <math>(((p), q , r ))\!</math>
| |
− | |-
| |
− | | <math>f_{158}\!</math>
| |
− | | <math>f_{10011110}\!</math>
| |
− | | 1 0 0 1 1 1 1 0
| |
− | | <math>(( p , (q), (r)))\!</math>
| |
− | |-
| |
− | | <math>f_{109}\!</math>
| |
− | | <math>f_{01101101}\!</math>
| |
− | | 0 1 1 0 1 1 0 1
| |
− | | <math>(( p , (q), r ))\!</math>
| |
| |- | | |- |
− | | <math>f_{107}\!</math> | + | | |
− | | <math>f_{01101011}\!</math> | + | <math>\begin{matrix} |
− | | 0 1 1 0 1 0 1 1 | + | f_{104} |
− | | <math>(( p , q , (r)))\!</math> | + | \\[4pt] |
| + | f_{148} |
| + | \\[4pt] |
| + | f_{146} |
| + | \\[4pt] |
| + | f_{97} |
| + | \\[4pt] |
| + | f_{134} |
| + | \\[4pt] |
| + | f_{73} |
| + | \\[4pt] |
| + | f_{41} |
| + | \\[4pt] |
| + | f_{22} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{01101000} |
| + | \\[4pt] |
| + | f_{10010100} |
| + | \\[4pt] |
| + | f_{10010010} |
| + | \\[4pt] |
| + | f_{01100001} |
| + | \\[4pt] |
| + | f_{10000110} |
| + | \\[4pt] |
| + | f_{01001001} |
| + | \\[4pt] |
| + | f_{00101001} |
| + | \\[4pt] |
| + | f_{00010110} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~1~1~0~1~0~0~0 |
| + | \\[4pt] |
| + | 1~0~0~1~0~1~0~0 |
| + | \\[4pt] |
| + | 1~0~0~1~0~0~1~0 |
| + | \\[4pt] |
| + | 0~1~1~0~0~0~0~1 |
| + | \\[4pt] |
| + | 1~0~0~0~0~1~1~0 |
| + | \\[4pt] |
| + | 0~1~0~0~1~0~0~1 |
| + | \\[4pt] |
| + | 0~0~1~0~1~0~0~1 |
| + | \\[4pt] |
| + | 0~0~0~1~0~1~1~0 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ( p , q , r ) |
| + | \\[4pt] |
| + | ( p , q , (r)) |
| + | \\[4pt] |
| + | ( p , (q), r ) |
| + | \\[4pt] |
| + | ( p , (q), (r)) |
| + | \\[4pt] |
| + | ((p), q , r ) |
| + | \\[4pt] |
| + | ((p), q , (r)) |
| + | \\[4pt] |
| + | ((p), (q), r ) |
| + | \\[4pt] |
| + | ((p), (q), (r)) |
| + | \end{matrix}</math> |
| |- | | |- |
− | | <math>f_{151}\!</math> | + | | |
− | | <math>f_{10010111}\!</math> | + | <math>\begin{matrix} |
− | | 1 0 0 1 0 1 1 1 | + | f_{233} |
− | | <math>(( p , q , r ))\!</math> | + | \\[4pt] |
| + | f_{214} |
| + | \\[4pt] |
| + | f_{182} |
| + | \\[4pt] |
| + | f_{121} |
| + | \\[4pt] |
| + | f_{158} |
| + | \\[4pt] |
| + | f_{109} |
| + | \\[4pt] |
| + | f_{107} |
| + | \\[4pt] |
| + | f_{151} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{11101001} |
| + | \\[4pt] |
| + | f_{11010110} |
| + | \\[4pt] |
| + | f_{10110110} |
| + | \\[4pt] |
| + | f_{01111001} |
| + | \\[4pt] |
| + | f_{10011110} |
| + | \\[4pt] |
| + | f_{01101101} |
| + | \\[4pt] |
| + | f_{01101011} |
| + | \\[4pt] |
| + | f_{10010111} |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 1~1~1~0~1~0~0~1 |
| + | \\[4pt] |
| + | 1~1~0~1~0~1~1~0 |
| + | \\[4pt] |
| + | 1~0~1~1~0~1~1~0 |
| + | \\[4pt] |
| + | 0~1~1~1~1~0~0~1 |
| + | \\[4pt] |
| + | 1~0~0~1~1~1~1~0 |
| + | \\[4pt] |
| + | 0~1~1~0~1~1~0~1 |
| + | \\[4pt] |
| + | 0~1~1~0~1~0~1~1 |
| + | \\[4pt] |
| + | 1~0~0~1~0~1~1~1 |
| + | \end{matrix}</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (((p), (q), (r))) |
| + | \\[4pt] |
| + | (((p), (q), r )) |
| + | \\[4pt] |
| + | (((p), q , (r))) |
| + | \\[4pt] |
| + | (((p), q , r )) |
| + | \\[4pt] |
| + | (( p , (q), (r))) |
| + | \\[4pt] |
| + | (( p , (q), r )) |
| + | \\[4pt] |
| + | (( p , q , (r))) |
| + | \\[4pt] |
| + | (( p , q , r )) |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |