| Line 1,368: | 
Line 1,368: | 
|   | Under <math>\operatorname{Ex}</math> we have the following interpretations:  |   | Under <math>\operatorname{Ex}</math> we have the following interpretations:  | 
|   |  |   |  | 
| − | : ''e''<sub>0</sub> expresses the logical constant "false"
  | + | {| align="center" cellpadding="8" width="90%"  | 
|   | + | | <math>e_0 = {}^{\backprime\backprime} \texttt{(~)} {}^{\prime\prime}</math> expresses the logical constant <math>\operatorname{false}.</math>  | 
|   | + | |-  | 
|   | + | | <math>e_1 = {}^{\backprime\backprime} \texttt{~} {}^{\prime\prime}</math> expresses the logical constant <math>\operatorname{true}.</math>  | 
|   | + | |-  | 
|   | + | | <math>e_2 = {}^{\backprime\backprime} \texttt{(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))} {}^{\prime\prime}</math> says <math>{}^{\backprime\backprime} \operatorname{not}~ p ~\operatorname{without}~ q,</math> <math>\operatorname{and~not}~ p ~\operatorname{without}~ r {}^{\prime\prime}.</math>  | 
|   | + | |-  | 
|   | + | | <math>e_3 = {}^{\backprime\backprime} \texttt{(} p \texttt{~(} q~r \texttt{))} {}^{\prime\prime}</math> says <math>{}^{\backprime\backprime} \operatorname{not}~ p ~\operatorname{without}~ q ~\operatorname{and}~ r {}^{\prime\prime}.</math>  | 
|   | + | |-  | 
|   | + | | <math>e_4 = {}^{\backprime\backprime} \texttt{(} p~q~r \texttt{~,~(} p \texttt{))} {}^{\prime\prime}</math> says <math>{}^{\backprime\backprime} p ~\operatorname{and}~ q ~\operatorname{and}~ r,</math> <math>~\operatorname{or~else~not}~ p{}^{\prime\prime}.</math>  | 
|   | + | |-  | 
|   | + | | <math>e_5 = {}^{\backprime\backprime} \texttt{((~(} p \texttt{~(} q \texttt{))~(} p \texttt{~(} r \texttt{))~,~(} p \texttt{~(} q~r \texttt{))~))} {}^{\prime\prime}</math> says that <math>e_2\!</math> and <math>e_3\!</math> say the same thing.  | 
|   | + | |}  | 
|   |  |   |  | 
| − | : ''e''<sub>1</sub> expresses the logical constant "true"
  | + | We took up the Equation <math>E_1\!</math> that reads as follows:  | 
| − |    |   | 
| − | : ''e''<sub>2</sub> says "not p without q, and not p without r"
  |   | 
| − |    |   | 
| − | : ''e''<sub>3</sub> says "not p without q and r"
  |   | 
| − |    |   | 
| − | : ''e''<sub>4</sub> says "p and q and r, or else not p"
  |   | 
| − |    |   | 
| − | : ''e''<sub>5</sub> says that ''e''<sub>2</sub> and ''e''<sub>3</sub> say the same thing
  |   | 
| − |    |   | 
| − | We took up the Equation ''E''<sub>1</sub> that reads as follows:  |   | 
|   |  |   |  | 
|   | : (p (q))(p (r))  =  (p (q r)).  |   | : (p (q))(p (r))  =  (p (q r)).  |