MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
1,146 bytes removed
, 03:25, 19 August 2009
Line 1,053: |
Line 1,053: |
| |} | | |} |
| | | |
− | The final graph in the sequence of equivalents is a disjunctive normal form (DNF) for the proposition on the left hand side of the equation <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))} = \texttt{(} p \texttt{(} q r \texttt{))}.</math> Remembering that a blank node is the graphical equivalent of a logical value <math>\operatorname{true},</math> the resulting DNF may be read as follows: | + | The final graph in the sequence of equivalents is a disjunctive normal form (DNF) for the proposition on the left hand side of the equation <math>\texttt{(} p \texttt{(} q \texttt{))(} p \texttt{(} r \texttt{))} = \texttt{(} p \texttt{(} q r \texttt{))}.</math> |
| + | |
| + | {| align="center" cellpadding="8" |
| + | | [[Image:Logical Graph (P (Q)) (P (R)) DNF.jpg|500px]] |
| + | | (32) |
| + | |} |
| + | |
| + | Remembering that a blank node is the graphical equivalent of a logical value <math>\operatorname{true},</math> the resulting DNF may be read as follows: |
| | | |
| {| align="center" cellpadding="8" style="text-align:center; width:90%" | | {| align="center" cellpadding="8" style="text-align:center; width:90%" |
| | | | | |
| <pre> | | <pre> |
− | o-----------------------------------------------------------o
| |
− | | DNF of "(p (q))(p (r))" |
| |
− | o-----------------------------------------------------------o
| |
− | | |
| |
− | | o |
| |
− | | | |
| |
− | | r o-------o---o r |
| |
− | | \ / |
| |
− | | \ / o |
| |
− | | \ / | |
| |
− | | q o-------o---o q |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | p o-------o---o p |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
| | | | | | | |
Line 1,089: |
Line 1,076: |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
| </pre> | | </pre> |
− | | (32)
| |
| |} | | |} |
| | | |