Line 2,436: |
Line 2,436: |
| Thus we obtain the following four relational data tables for the propositions that we are looking at in Example 2. | | Thus we obtain the following four relational data tables for the propositions that we are looking at in Example 2. |
| | | |
− | {| align="center" cellpadding="10" style="text-align:center; width:90%" | + | <br> |
− | | | + | |
− | <pre> | + | {| align="center" cellpadding="8" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:40%" |
− | [| f_207 |] = [| p =< q |] | + | |+ style="height:30px" | <math>\text{Table 48.} ~~ [| f_{207} |] ~=~ [| p \le q |]</math> |
− | o---------o---------o---------o
| + | |- style="height:40px" |
− | | p | q | r | | + | | style="border-bottom:1px solid black" | <math>p\!</math> |
− | o---------o---------o---------o
| + | | style="border-bottom:1px solid black" | <math>q\!</math> |
− | | 0 0 0 |
| + | | style="border-bottom:1px solid black" | <math>r\!</math> |
− | | 0 0 1 | | |
− | | 0 1 0 | | |
− | | 0 1 1 |
| |
− | | 1 1 0 |
| |
− | | 1 1 1 |
| |
− | o-----------------------------o
| |
− | </pre> | |
− | | (48)
| |
| |- | | |- |
− | | | + | | <math>0\!</math> || <math>0\!</math> || <math>0\!</math> |
− | <pre> | |
− | [| f_187 |] = [| q =< r |]
| |
− | o---------o---------o---------o
| |
− | | p | q | r |
| |
− | o---------o---------o---------o
| |
− | | 0 0 0 |
| |
− | | 0 0 1 | | |
− | | 0 1 1 |
| |
− | | 1 0 0 |
| |
− | | 1 0 1 |
| |
− | | 1 1 1 |
| |
− | o-----------------------------o
| |
− | </pre> | |
− | | (49)
| |
| |- | | |- |
− | | | + | | <math>0\!</math> || <math>0\!</math> || <math>1\!</math> |
− | <pre> | |
− | [| f_175 |] = [| p =< r |]
| |
− | o---------o---------o---------o
| |
− | | p | q | r |
| |
− | o---------o---------o---------o
| |
− | | 0 0 0 |
| |
− | | 0 0 1 | | |
− | | 0 1 0 |
| |
− | | 0 1 1 |
| |
− | | 1 0 1 |
| |
− | | 1 1 1 |
| |
− | o-----------------------------o
| |
− | </pre> | |
− | | (50)
| |
| |- | | |- |
− | | | + | | <math>0\!</math> || <math>1\!</math> || <math>0\!</math> |
− | <pre> | + | |- |
− | [| f_139 |] = [| p =< q =< r |]
| + | | <math>0\!</math> || <math>1\!</math> || <math>1\!</math> |
− | o---------o---------o---------o
| + | |- |
− | | p | q | r | | + | | <math>1\!</math> || <math>1\!</math> || <math>0\!</math> |
− | o---------o---------o---------o
| + | |- |
− | | 0 0 0 | | + | | <math>1\!</math> || <math>1\!</math> || <math>1\!</math> |
− | | 0 0 1 | | + | |} |
− | | 0 1 1 | | + | |
− | | 1 1 1 | | + | <br> |
− | o-----------------------------o
| + | |
− | </pre> | + | {| align="center" cellpadding="8" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:40%" |
− | | (51) | + | |+ style="height:30px" | <math>\text{Table 49.} ~~ [| f_{187} |] ~=~ [| q \le r |]</math> |
| + | |- style="height:40px" |
| + | | style="border-bottom:1px solid black" | <math>p\!</math> |
| + | | style="border-bottom:1px solid black" | <math>q\!</math> |
| + | | style="border-bottom:1px solid black" | <math>r\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>0\!</math> || <math>0\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>0\!</math> || <math>1\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>1\!</math> || <math>1\!</math> |
| + | |- |
| + | | <math>1\!</math> || <math>0\!</math> || <math>0\!</math> |
| + | |- |
| + | | <math>1\!</math> || <math>0\!</math> || <math>1\!</math> |
| + | |- |
| + | | <math>1\!</math> || <math>1\!</math> || <math>1\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="8" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:40%" |
| + | |+ style="height:30px" | <math>\text{Table 50.} ~~ [| f_{175} |] ~=~ [| p \le r |]</math> |
| + | |- style="height:40px" |
| + | | style="border-bottom:1px solid black" | <math>p\!</math> |
| + | | style="border-bottom:1px solid black" | <math>q\!</math> |
| + | | style="border-bottom:1px solid black" | <math>r\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>0\!</math> || <math>0\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>0\!</math> || <math>1\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>1\!</math> || <math>0\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>1\!</math> || <math>1\!</math> |
| + | |- |
| + | | <math>1\!</math> || <math>0\!</math> || <math>1\!</math> |
| + | |- |
| + | | <math>1\!</math> || <math>1\!</math> || <math>1\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" cellpadding="8" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:40%" |
| + | |+ style="height:30px" | <math>\text{Table 51.} ~~ [| f_{139} |] ~=~ [| p \le q \le r |]</math> |
| + | |- style="height:40px" |
| + | | style="border-bottom:1px solid black" | <math>p\!</math> |
| + | | style="border-bottom:1px solid black" | <math>q\!</math> |
| + | | style="border-bottom:1px solid black" | <math>r\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>0\!</math> || <math>0\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>0\!</math> || <math>1\!</math> |
| + | |- |
| + | | <math>0\!</math> || <math>1\!</math> || <math>1\!</math> |
| + | |- |
| + | | <math>1\!</math> || <math>1\!</math> || <math>1\!</math> |
| |} | | |} |
| + | |
| + | <br> |
| | | |
| In the medium of these unassuming examples, we begin to see the activities of logical inference and methodical inquiry as ''information clarifying operations''. | | In the medium of these unassuming examples, we begin to see the activities of logical inference and methodical inquiry as ''information clarifying operations''. |