Line 10: |
Line 10: |
| The axioms are just four in number, divided into the ''arithmetic initials'', <math>I_1\!</math> and <math>I_2,\!</math> and the ''algebraic initials'', <math>J_1\!</math> and <math>J_2.\!</math> | | The axioms are just four in number, divided into the ''arithmetic initials'', <math>I_1\!</math> and <math>I_2,\!</math> and the ''algebraic initials'', <math>J_1\!</math> and <math>J_2.\!</math> |
| | | |
− | {| align="center" border="0" cellpadding="10" cellspacing="0" | + | {| align="center" cellpadding="10" |
| | [[Image:PERS_Figure_01.jpg|500px]] || (1) | | | [[Image:PERS_Figure_01.jpg|500px]] || (1) |
| |- | | |- |
Line 20: |
Line 20: |
| |} | | |} |
| | | |
− | One way of assigning logical meaning to the initial equations is known as the ''entitative interpretation'' (EN). Under EN, the axioms read as follows: | + | One way of assigning logical meaning to the initial equations is known as the ''entitative interpretation'' (<math>\operatorname{En}</math>). Under <math>\operatorname{En},</math> the axioms read as follows: |
| | | |
− | {| align="center" border="0" cellpadding="10" | + | {| align="center" cellpadding="10" |
| | | | | |
− | <math>\begin{array}{ccccc} | + | <math>\begin{matrix} |
− | I_1 & : & | + | I_1 |
− | \operatorname{true}\ \operatorname{or}\ \operatorname{true} & = & | + | & : & |
− | \operatorname{true} \\ | + | \operatorname{true} ~\operatorname{or}~ \operatorname{true} |
− | I_2 & : & | + | & = & |
− | \operatorname{not}\ \operatorname{true}\ & = & | + | \operatorname{true} |
− | \operatorname{false} \\ | + | \\ |
− | J_1 & : & | + | I_2 |
− | a\ \operatorname{or}\ \operatorname{not}\ a & = & | + | & : & |
− | \operatorname{true} \\ | + | \operatorname{not}~ \operatorname{true} |
− | J_2 & : & | + | & = & |
− | (a\ \operatorname{or}\ b)\ \operatorname{and}\ (a\ \operatorname{or}\ c) & = & | + | \operatorname{false} |
− | a\ \operatorname{or}\ (b\ \operatorname{and}\ c) \\ | + | \\ |
− | \end{array}</math> | + | J_1 |
| + | & : & |
| + | a ~\operatorname{or}~ \operatorname{not}~ a |
| + | & = & |
| + | \operatorname{true} |
| + | \\ |
| + | J_2 |
| + | & : & |
| + | (a ~\operatorname{or}~ b) ~\operatorname{and}~ (a ~\operatorname{or}~ c) |
| + | & = & |
| + | a ~\operatorname{or}~ (b ~\operatorname{and}~ c) |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |
− | Another way of assigning logical meaning to the initial equations is known as the ''existential interpretation'' (EX). Under EX, the axioms read as follows: | + | Another way of assigning logical meaning to the initial equations is known as the ''existential interpretation'' (<math>\operatorname{Ex}</math>). Under <math>\operatorname{Ex},</math> the axioms read as follows: |
| | | |
− | {| align="center" border="0" cellpadding="10" | + | {| align="center" cellpadding="10" |
| | | | | |
− | <math>\begin{array}{ccccc} | + | <math>\begin{matrix} |
− | I_1 & : & | + | I_1 |
− | \operatorname{false}\ \operatorname{and}\ \operatorname{false} & = & | + | & : & |
− | \operatorname{false} \\ | + | \operatorname{false} ~\operatorname{and}~ \operatorname{false} |
− | I_2 & : & | + | & = & |
− | \operatorname{not}\ \operatorname{false} & = & | + | \operatorname{false} |
− | \operatorname{true} \\ | + | \\ |
− | J_1 & : & | + | I_2 |
− | a\ \operatorname{and}\ \operatorname{not}\ a & = & | + | & : & |
− | \operatorname{false} \\ | + | \operatorname{not}~ \operatorname{false} |
− | J_2 & : & | + | & = & |
− | (a\ \operatorname{and}\ b)\ \operatorname{or}\ (a\ \operatorname{and}\ c) & = & | + | \operatorname{true} |
− | a\ \operatorname{and}\ (b\ \operatorname{or}\ c) \\ | + | \\ |
− | \end{array}</math> | + | J_1 |
| + | & : & |
| + | a ~\operatorname{and}~ \operatorname{not}~ a |
| + | & = & |
| + | \operatorname{false} |
| + | \\ |
| + | J_2 |
| + | & : & |
| + | (a ~\operatorname{and}~ b) ~\operatorname{or}~ (a ~\operatorname{and}~ c) |
| + | & = & |
| + | a ~\operatorname{and}~ (b ~\operatorname{or}~ c) |
| + | \end{matrix}</math> |
| |} | | |} |
| | | |