Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
→‎Formal development: redo TeX markup
Line 10: Line 10:  
The axioms are just four in number, divided into the ''arithmetic initials'', <math>I_1\!</math> and <math>I_2,\!</math> and the ''algebraic initials'', <math>J_1\!</math> and <math>J_2.\!</math>
 
The axioms are just four in number, divided into the ''arithmetic initials'', <math>I_1\!</math> and <math>I_2,\!</math> and the ''algebraic initials'', <math>J_1\!</math> and <math>J_2.\!</math>
   −
{| align="center" border="0" cellpadding="10" cellspacing="0"
+
{| align="center" cellpadding="10"
 
| [[Image:PERS_Figure_01.jpg|500px]] || (1)
 
| [[Image:PERS_Figure_01.jpg|500px]] || (1)
 
|-
 
|-
Line 20: Line 20:  
|}
 
|}
   −
One way of assigning logical meaning to the initial equations is known as the ''entitative interpretation'' (EN).  Under EN, the axioms read as follows:
+
One way of assigning logical meaning to the initial equations is known as the ''entitative interpretation'' (<math>\operatorname{En}</math>).  Under <math>\operatorname{En},</math> the axioms read as follows:
   −
{| align="center" border="0" cellpadding="10"
+
{| align="center" cellpadding="10"
 
|
 
|
<math>\begin{array}{ccccc}
+
<math>\begin{matrix}
I_1 & : &
+
I_1
\operatorname{true}\ \operatorname{or}\ \operatorname{true} & = &
+
& : &
\operatorname{true} \\
+
\operatorname{true} ~\operatorname{or}~ \operatorname{true}
I_2 & : &
+
& = &
\operatorname{not}\ \operatorname{true}\ & = &
+
\operatorname{true}
\operatorname{false} \\
+
\\
J_1 & : &
+
I_2
a\ \operatorname{or}\ \operatorname{not}\ a & = &
+
& : &
\operatorname{true} \\
+
\operatorname{not}~ \operatorname{true}
J_2 & : &
+
& = &
(a\ \operatorname{or}\ b)\ \operatorname{and}\ (a\ \operatorname{or}\ c) & = &
+
\operatorname{false}
a\ \operatorname{or}\ (b\ \operatorname{and}\ c) \\
+
\\
\end{array}</math>
+
J_1
 +
& : &
 +
a ~\operatorname{or}~ \operatorname{not}~ a
 +
& = &
 +
\operatorname{true}
 +
\\
 +
J_2
 +
& : &
 +
(a ~\operatorname{or}~ b) ~\operatorname{and}~ (a ~\operatorname{or}~ c)
 +
& = &
 +
a ~\operatorname{or}~ (b ~\operatorname{and}~ c)
 +
\end{matrix}</math>
 
|}
 
|}
   −
Another way of assigning logical meaning to the initial equations is known as the ''existential interpretation'' (EX).  Under EX, the axioms read as follows:
+
Another way of assigning logical meaning to the initial equations is known as the ''existential interpretation'' (<math>\operatorname{Ex}</math>).  Under <math>\operatorname{Ex},</math> the axioms read as follows:
   −
{| align="center" border="0" cellpadding="10"
+
{| align="center" cellpadding="10"
 
|
 
|
<math>\begin{array}{ccccc}
+
<math>\begin{matrix}
I_1 & : &
+
I_1
\operatorname{false}\ \operatorname{and}\ \operatorname{false} & = &
+
& : &
\operatorname{false} \\
+
\operatorname{false} ~\operatorname{and}~ \operatorname{false}
I_2 & : &
+
& = &
\operatorname{not}\ \operatorname{false} & = &
+
\operatorname{false}
\operatorname{true} \\
+
\\
J_1 & : &
+
I_2
a\ \operatorname{and}\ \operatorname{not}\ a & = &
+
& : &
\operatorname{false} \\
+
\operatorname{not}~ \operatorname{false}
J_2 & : &
+
& = &
(a\ \operatorname{and}\ b)\ \operatorname{or}\ (a\ \operatorname{and}\ c) & = &
+
\operatorname{true}
a\ \operatorname{and}\ (b\ \operatorname{or}\ c) \\
+
\\
\end{array}</math>
+
J_1
 +
& : &
 +
a ~\operatorname{and}~ \operatorname{not}~ a
 +
& = &
 +
\operatorname{false}
 +
\\
 +
J_2
 +
& : &
 +
(a ~\operatorname{and}~ b) ~\operatorname{or}~ (a ~\operatorname{and}~ c)
 +
& = &
 +
a ~\operatorname{and}~ (b ~\operatorname{or}~ c)
 +
\end{matrix}</math>
 
|}
 
|}
  
12,080

edits

Navigation menu