Changes

MyWikiBiz, Author Your Legacy — Friday January 10, 2025
Jump to navigationJump to search
→‎Exemplary proofs: convert graphics + add Peirce's Law
Line 783: Line 783:  
|}
 
|}
   −
==Exemplary proofs==
+
===Exemplary proofs===
   −
Now to take up a more interesting example, here is the statement and a proof of the ''Splendid Theorem'' from Leibniz that was brought to my attention by John Sowa.
+
Based on the axioms given at the outest, and aided by the theorems recorded so far, it is possible to prove a multitude of much more complex theorems.  A couple of all-time favorites are given next.
   −
<pre>
+
====Peirce's law====
| If 'a' is 'b' and 'd' is 'c', then 'ad' will be 'bc'.
  −
| This is a fine theorem, which is proved in this way:
  −
|
  −
| 'a' is 'b', therefore 'ad' is 'bd' (by what precedes),
  −
|
  −
| 'd' is 'c', therefore 'bd' is 'bc' (again by what precedes),
  −
|
  −
| 'ad' is 'bd', and 'bd' is 'bc', therefore 'ad' is 'bc'.  Q.E.D.
  −
|
  −
| Leibniz, 'Logical Papers', page 41.
  −
|
  −
| Leibniz, G.W., "Addenda to the Specimen of the Universal Calculus",
  −
| pages 40-46 in Parkinson, G.H.R. (ed.), 'Leibniz:  Logical Papers',
  −
| Oxford University Press, London, UK, 1966.  (Gerhardt, 7, p. 223).
     −
o-----------------------------------------------------------o
+
: ''[[Peirce's law|Main article: Peirce's law]]''
| Praeclarum Theorema (Leibniz) ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
 
o-----------------------------------------------------------o
+
Peirce's law is commonly written in the following form:
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
 
| ` ` b o ` o c ` ` o bc` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
{| align="center" cellpadding="10"
| ` ` ` | ` | ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
| <math>((p \Rightarrow q) \Rightarrow p) \Rightarrow p</math>
| ` ` a o ` o d ` ` o ad` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
|}
| ` ` ` `\ /` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
 
| ` ` ` ` o---------o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
The existential graph representation of Peirce's law is shown in Figure&nbsp;31.
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
 
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
{| align="center" cellpadding="10"
| ` ` ` ` @ ` ` ` ` ` ` ` ` ` = ` ` ` ` ` ` ` ` ` @ ` ` ` ` |
+
| [[Image:Logical_Graph_Figure_31.jpg|500px]]
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
|}
o-----------------------------------------------------------o
+
 
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
A graphical proof of Peirce's law is shown in Figure&nbsp;32.
| `((a(b))(d(c))((ad(bc)))) ` = ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
 
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
+
{| align="center" cellpadding="10"
o-----------------------------------------------------------o
+
| [[Image:Logical_Graph_Figure_32.jpg|500px]]
</pre>
+
|}
 +
 
 +
====Praeclarum theorema====
 +
 
 +
An illustrious example of a propositional theorem is the ''praeclarum theorema'', the ''admirable'', ''shining'', or ''splendid'' theorem of [[Leibniz]].
 +
 
 +
<blockquote>
 +
<p>If ''a'' is ''b'' and ''d'' is ''c'', then ''ad'' will be ''bc''.</p>
 +
 
 +
<p>This is a fine theorem, which is proved in this way:</p>
 +
 
 +
<p>''a'' is ''b'', therefore ''ad'' is ''bd'' (by what precedes),</p>
 +
 
 +
<p>''d'' is ''c'', therefore ''bd'' is ''bc'' (again by what precedes),</p>
 +
 
 +
<p>''ad'' is ''bd'', and ''bd'' is ''bc'', therefore ''ad'' is ''bc''.  Q.E.D.</p>
 +
 
 +
<p>([[Leibniz]], ''Logical Papers'', p. 41).</p>
 +
</blockquote>
 +
 
 +
Under the existential interpretation, the praeclarum theorema is represented by means of the following logical graph.
 +
 
 +
{| align="center" cellpadding="10"
 +
| [[Image:Logical_Graph_Figure_33.jpg|500px]]
 +
|}
    
And here's a neat proof of that nice theorem.
 
And here's a neat proof of that nice theorem.
   −
<pre>
+
{| align="center" cellpadding="10"
o-----------------------------------------------------------o
+
| [[Image:Logical_Graph_Figure_34.jpg|500px]]
| Praeclarum Theorema (Leibniz).` Proof.` ` ` ` ` ` ` ` ` ` |
+
|}
o-----------------------------------------------------------o
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` b o ` o c ` ` o bc` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` | ` | ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` a o ` o d ` ` o ad` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` `\ /` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` o---------o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` @ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
o=============================< C1. Reflect "ad(bc)" >======o
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` b o ` o c ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` | ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` a o ` o d ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` `\ /` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` `ad o---------o bc` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` @ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
o=============================< Weed "a", "d" >=============o
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` b o ` o c ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` | ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` o ` o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` `\ /` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` `ad o---------o bc` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` @ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
o=============================< C1. Reflect "b", "c" >======o
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` `abcd o---------o bc` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` @ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
o=============================< Weed "bc" >=================o
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` `abcd o---------o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` @ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
o=============================< C3. Recess "abcd" >=========o
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` o---------o ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` @ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
o=============================< I2. Refold "(())" >=========o
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` @ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
| ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |
  −
o=============================< QED >=======================o
  −
</pre>
      
==Themes and variations==
 
==Themes and variations==
12,080

edits

Navigation menu