Changes

MyWikiBiz, Author Your Legacy — Monday January 06, 2025
Jump to navigationJump to search
Line 10: Line 10:  
'''''NOTE.'''  This section is currently under construction.  In the meantime, see [[Logical Graph]].''
 
'''''NOTE.'''  This section is currently under construction.  In the meantime, see [[Logical Graph]].''
   −
The development of differential logic is greatly facilitated by having a conceptually efficient calculus in place at the level of [[boolean-valued functions]] and elementary logical propositions.  A calculus that is very efficient from both conceptual and computational standpoints is based on just two types of logical connectives, both of variable <math>k\!</math>-ary scope.  The formulas of this calculus map into a species of graph-theoretical structures called ''painted and rooted cacti'' (PARCs) that lend visual representation to their functional structures and smooth the path to efficient computation.
+
The development of differential logic is greatly facilitated by having a conceptually efficient calculus in place at the level of [[boolean-valued functions]] and elementary logical propositions.  A calculus that is very efficient from both conceptual and computational standpoints is based on just two types of logical connectives, both of variable <math>k\!</math>-ary scope.  The formulas of this calculus map into a species of graph-theoretical structures called ''painted and rooted cacti'' (PARCs) that lend visual representation to their functional structure and smooth the path to efficient computation.
    
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
| The first kind of propositional expression takes the form of a parenthesized sequence of propositional expressions, <math>\texttt{(} e_1 \texttt{,} e_2 \texttt{,} \ldots \texttt{,} e_{k-1} \texttt{,} e_k \texttt{)},</math> and is taken to indicate that exactly one of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k</math> is false, in other words, that their [[minimal negation]] is true.  A clause of this form may also be exhibited as a graph-theoretical structure calle
+
| The first kind of propositional expression is a parenthesized sequence of propositional expressions, written as <math>\texttt{(} e_1 \texttt{,} e_2 \texttt{,} \ldots \texttt{,} e_{k-1} \texttt{,} e_k \texttt{)}</math> and read to say that exactly one of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k</math> is false, in other words, that their [[minimal negation]] is true.  A clause of this form maps into a PARC structure called a ''lobe'', in this case, one that is ''painted'' with the colors <math>e_1, e_2, \ldots, e_{k-1}, e_k</math> as shown below.
 
|}
 
|}
   Line 21: Line 21:     
{| align="center" cellpadding="6" width="90%"
 
{| align="center" cellpadding="6" width="90%"
| The second kind of propositional expression takes the form of a concatenated sequence of propositional expressions, <math>e_1\ e_2\ \ldots\ e_{k-1}\ e_k,</math> and is taken to indicate that all of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k</math> are true, in other words, that their [[logical conjunction]] is true.
+
| The second kind of propositional expression is a concatenated sequence of propositional expressions, written as <math>e_1\ e_2\ \ldots\ e_{k-1}\ e_k</math> and read to say that all of the propositions <math>e_1, e_2, \ldots, e_{k-1}, e_k</math> are true, in other words, that their [[logical conjunction]] is true.  A clause of this form maps into a PARC structure called a ''node'', in this case, one that is ''painted'' with the colors <math>e_1, e_2, \ldots, e_{k-1}, e_k</math> as shown below.
 
|}
 
|}
  
12,080

edits

Navigation menu